Triply periodic surface description using Laplace–Beltrami operator and a statistical machine learning model
- Authors: Smolkov M.I.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 29, No 1 (2025)
- Pages: 158-173
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journals.rcsi.science/1991-8615/article/view/311049
- DOI: https://doi.org/10.14498/vsgtu2105
- EDN: https://elibrary.ru/ENXAZE
- ID: 311049
Cite item
Full Text
Abstract
Triply periodic surfaces (TPS) and their minimal analogs (TPMS) are currently widely used in various fields, including mechanics, biomechanics, aerodynamics, hydrodynamics, and radiophysics. In this context, the problem of establishing correlations between the topological and geometric properties of surfaces and their physical characteristics arises. To address this problem, it is necessary to introduce a measure of similarity between surfaces with different topological and geometric features. This work focuses on describing TPS and TPMS in terms of a specific metric space of descriptors. The problem is solved using the mathematical framework of image recognition theory. A descriptor is constructed based on a set of eigenvectors and eigenvalues of the Beltrami–Laplace operator and a joint Bayesian model. A metric based on a probabilistic measure of surface similarity is introduced in the descriptor space. The effectiveness of the method developed in this work has been tested on 51 surfaces of class P. The accuracy of predicting the surface type is 92.8 %. The developed machine learning model enables the determination of whether a given surface belongs to the class of P-surfaces.
Full Text
##article.viewOnOriginalSite##About the authors
Mikhail I. Smolkov
Samara State Technical University
Author for correspondence.
Email: m.smolkov97@gmail.com
ORCID iD: 0000-0001-5573-662X
https://www.mathnet.ru/person227410
Postgraduate Research Student; Junior Researcher; International Research Center for Theoretical Materials Science
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244References
- Abueidda D. W., Al-Rub R. K. A., Dalaq A. S., et al. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces, Mech. Mater., 2016, vol. 95, pp. 102–115. DOI: https://doi.org/10.1016/j.mechmat.2016.01.004.
- Maskery I., Sturm L., Aremu A. O., et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, 2018, vol. 152, pp. 62–71. DOI: https://doi.org/10.1016/j.polymer.2017.11.049.
- Montazerian H., Davoodi E., Asadi-Eydivand M., et al. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties, Materials & Design, 2017, vol. 126, pp. 98–114. DOI: https://doi.org/10.1016/j.matdes.2017.04.009.
- Sadeghi F., Baniassadi M., Shahidi A., Baghani M. TPMS metamaterial structures based on shape memory polymers: Mechanical, thermal and thermomechanical assessment, J. Mater. Res. Techn., 2023, vol. 23, pp. 3726–3743. DOI: https://doi.org/10.1016/j.jmrt.2023.02.014.
- Yang W., An J., Kai Chua C., Zhou K. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography, Virt. Phys. Prot., 2020, vol. 15, no. 2, pp. 242–249. DOI: https://doi.org/10.1080/17452759.2020.1740747.
- Wang H., Tan D., Liu Z., et al. On crashworthiness of novel porous structure based on composite TPMS structures, Eng. Struct., 2022, vol. 252, 113640. DOI: https://doi.org/10.1016/j.engstruct.2021.113640.
- Saleh M., Anwar S., Al-Ahmari A. M., Alfaify A. Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures, Polymers, 2022, vol. 14, no. 21, 4595. DOI: https://doi.org/10.3390/polym14214595.
- Al-Ketan O., Abu Al-Rub R. K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Adv. Eng. Mater., 2019, vol. 21, no. 10, 1900524. DOI: https://doi.org/10.1002/adem.201900524.
- Mal’tsev V. P., Shatrov A. D. Triply degenerate surface waves in the metamaterial plate, J. Commun. Technol. Electron., 2012, vol. 57, no. 2, pp. 170–173. DOI: https://doi.org/10.1134/S1064226912010111.
- Mias C., Webb J. P., El-Esber L., Ferrari R. Finite element modelling of electromagnetic waves in doubly and triply periodic structures, IEE Proc. Optoelectron., 2005, vol. 152, no. 5. DOI: https://doi.org/10.1049/ip-opt:20050007.
- Smolkov M. I., Krutov A. F. Software development for implementing a model of porous structures based on three periodic surfaces, Phys. Wave Proces. Radio Systems, 2022, vol. 25, no. 1, pp. 71–79 (In Russian). EDN: NMHCYK. DOI: https://doi.org/10.18469/1810-3189.2022.25.1.71-79.
- Smolkov M. I., Blatova O. A., Krutov A. F., Blatov V. A. Generating triply periodic surfaces from crystal structures: the tiling approach and its application to zeolites, Acta Crystal., Sect. A, 2022, vol. 78, no. 4, pp. 327–336. EDN: DLGEKT. DOI: https://doi.org/10.1107/S2053273322004545.
- Eremin A. V., Frolov M. A., Krutov A. F., et. al. Mechanical properties of porous materials based on new triply periodic and minimal surfaces, Mech. Adv. Mater. Struct., 2024, vol. 31, no. 29, pp. 11320–11336. DOI: https://doi.org/10.1080/15376494.2024.2303724.
- Alexandrov E. V., Blatov V. A., Proserpio D. M. A topological method for the classification of entanglements in crystal networks, Acta Crystal., Sect. A, 2012, vol. 68, no. 4, pp. 484–493. EDN: PDSSYB. DOI: https://doi.org/10.1107/S0108767312019034.
- Blatov V. A., Alexandrov E. V., Shevchenko A. P. Topology: ToposPro, In: Comprehensive Coordination Chemistry III, vol. 2, Fundamentals: Characterization Methods, Theoretical Analysis, and Case Studies, 2021, pp. 389–412. EDN: FDMWRS. DOI: https://doi.org/10.1016/B978-0-12-409547-2.14576-7.
- Wang Z., Lin H. 3D shape retrieval based on Laplace operator and joint Bayesian model, Visual Informatics, 2020, vol. 4, no. 3, pp. 69–76. DOI: https://doi.org/10.1016/j.visinf.2020.08.002.
- Chen D., Cao X., Wang L., et al. Bayesian face revisited: A joint formulation, In: Computer Vision–ECCV 2012, Lecture Notes in Computer Science, 7574. Springer, Berlin, Heidelberg, 2012, pp. 566–579. DOI: https://doi.org/10.1007/978-3-642-33712-3_41.
- Schoen A. H. Infinite Periodic Minimal Surfaces Without Self-Intersections, NASA Technical Note (TN) D-5541, C-98. Cambridge, MA, NASA Electronics Research Center, 1970. https://ntrs.nasa.gov/citations/19700020472.
- Reuter M., Wolter F. E., Peinecke N. Laplace–Beltrami spectra as 'Shape-DNA' of surfaces and solids, Computer–Aided Design, 2006, vol. 38, no. 4, pp. 342–366. DOI: https://doi.org/10.1016/j.cad.2005.10.011.
- Sharp N., Crane K. A laplacian for nonmanifold triangle meshes, Computer Graphics Forum, 2020, vol. 39, no. 5, pp. 69–80. DOI: https://doi.org/10.1111/cgf.14069.
- Virtanen P.,Gommers R., Oliphant T. E., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nature Methods, 2020, vol. 17, no. 3, pp. 261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2.
- Lévy B. Laplace–Beltrami eigenfunctions towards an algorithm that "understands" geometry, In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06). Matsushima, Japan, 2006, pp. 13–13. DOI: https://doi.org/10.1109/SMI.2006.21.
- Rustamov R. M. Laplace–Beltrami eigenfunctions for deformation invariant shape representation, In: SGP07: Eurographics Symposium on Geometry Processing, 257, 2007, pp. 225–233. DOI: https://doi.org/10.2312/SGP/SGP07/225-233.
- Song R., Zhao Z., Wang X. The application of V-system in visualization of multidimensional data, In: 11th IEEE International Conference on Computer-Aided Design and Computer Graphics. Huangshan, China, 2009, pp. 170–173. DOI: https://doi.org/10.1109/CADCG.2009.5246911.
- Ma H., Qi D., Song R., Wang T. The complete orthogonal V-system and its applications, Commun. Pure Appl. Anal., 2007, vol. 6, no. 3, pp. 853–871. DOI: https://doi.org/10.3934/cpaa.2007.6.853.
- Song R., Wang X., Ou M., Li J. The structure of V-system over triangulated domains, In: Advances in Geometric Modeling and Processing, Lecture Notes in Computer Science, 4975. Berlin, Heidelberg, Springer, 2008, pp. 563–569. DOI: https://doi.org/10.1007/978-3-540-79246-8_48.
- Huang C., Yang L. H., Qi D. X. A new class of multi-wavelet bases: V-system, Acta. Math. Sin., English Ser., 2012, vol. 28, no. 1, pp. 105–120. DOI: https://doi.org/10.1007/s10114-012-9424-8.
Supplementary files
