A common fixed-point result via a supplemental function with an application
- Authors: Touail Y.1, Jaid A.2, El Moutawakil D.3
-
Affiliations:
- Université Sidi Mohamed Ben Abdellah
- Université Sultan Moulay Slimane
- Université Chouaib Doukkali
- Issue: Vol 28, No 4 (2024)
- Pages: 790-798
- Section: Short Communications
- URL: https://journals.rcsi.science/1991-8615/article/view/311047
- DOI: https://doi.org/10.14498/vsgtu2074
- EDN: https://elibrary.ru/PXHWMS
- ID: 311047
Cite item
Full Text
Abstract
In this paper, we prove a novel common fixed-point theorem for two commuting mappings. This assertion is proved using the measure of noncompactness in Banach spaces. Moreover, an application is given to demonstrate the usability of the obtained results.
Full Text
##article.viewOnOriginalSite##About the authors
Youssef Touail
Université Sidi Mohamed Ben Abdellah
Author for correspondence.
Email: youssef9touail@gmail.com
https://www.mathnet.ru/person186040
Département de Mathématique; FSDM, Faculté des Sciences Dhar El Mahraz
Morocco, FezAmine Jaid
Université Sultan Moulay Slimane
Email: aminejaid1990@gmail.com
https://www.mathnet.ru/person193681
Equipe de Recherche en Mathématiques Appliquées, Technologies de l’Information et de la Communication; Faculté Polydisciplinaire de Khouribga
Morocco, Beni-MellalDriss El Moutawakil
Université Chouaib Doukkali
Email: d.elmotawakil@gmail.com
https://www.mathnet.ru/person193640
Département de Mathématique; Ecole Supérieure de l’Education et de la Formation
Morocco, El JadidaReferences
- Aghajani A., Pourhadi E., Trujillo J. Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 2013, vol. 16, no. 4, pp. 962–977. DOI: https://doi.org/10.2478/s13540-013-0059-y.
- Ali A. A., Amar A. B. Measures of weak noncompactness, nonlinear Leray–Schauder alternatives in Banach algebras satisfying condition (p) and an application, Quaest. Math., 2016, vol. 39, no. 3, pp. 319–340. DOI: https://doi.org/10.2989/16073606.2015.1070378.
- Ammar A., Jeribi A. Measures of noncompactness and essential pseudospectra on Banach space, Math. Methods Appl. Sci., 2014, vol. 37, no. 3, pp. 447–452. DOI: https://doi.org/10.1002/mma.2808.
- Arab R., Allahyari R., Haghighi A. S. Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness, Appl. Math. Comput., 2014, vol. 246, pp. 283–291. DOI: https://doi.org/10.1016/j.amc.2014.08.023.
- Banaś J. Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Open Math., 2012, vol. 10, no. 6, pp. 2003–2011. DOI: https://doi.org/10.2478/s11533-012-0120-9.
- Lixin C., Qingjin C., Qinrui S., et al. A new approach to measures of noncompactness of Banach spaces, Stud. Math., 2018, vol. 240, pp. 21–45. DOI: https://doi.org/10.4064/sm8448-2-2017.
- Mursaleen M. Application of measure of noncompactness to infinite systems of differential equations, Can. Math. Bull., 2013, vol. 56, no. 2, pp. 388–394. DOI: https://doi.org/10.4153/CMB-2011-170-7.
- Nikbakhtsarvestani F., Vaezpour S. M., Asadi M. F(ψ, φ)-Contraction in terms of measure of noncompactness with application for nonlinear integral equations, J. Inequal. Appl., 2017, vol. 2017, 271. DOI: https://doi.org/10.1186/s13660-017-1545-2.
- Vetro C., Vetro F. On the existence of at least a solution for functional integral equations via measure of noncompactness, Banach J. Math. Anal., 2017, vol. 11, no. 3, pp. 497–512. DOI: https://doi.org/10.1215/17358787-2017-0003.
- Kuratowski K. Sur les espaces complets, Fundam. Math., 1930, vol. 15, pp. 301–309 (In French).
- Darbo G. Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 1955, vol. 24, pp. 84–92 (In Italian).
- Schauder J. Der Fixpunktsatz in Funktionalräumen, Stud. Math., 1930, vol. 2, pp. 171–180 (In German).
- Banach St. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922, vol. 3, pp. 133–181 (In French).
- Jungck G., Rhoades B. E. Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 1998, vol. 29, no. 3, pp. 227–238.
- Touail Y., El Moutawakil D. New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations, Int. J. Nonlinear Anal. Appl., 2021, vol. 12, no. 1, pp. 903–911. DOI: https://doi.org/10.22075/ijnaa.2021.21318.2245.
- Touail Y., El Moutawakil D., Bennani S. Fixed point theorems for contractive self-mappings of a bounded metric space, J. Funct. Spaces, vol. 2019, no. 2019, 4175807. DOI: https://doi.org/10.1155/2019/4175807.
- Touail Y., El Moutawakil D. Fixed point results for new type of multivalued mappings in bounded metric spaces with an application, Ric. Mat, 2022, vol. 71, no. 2, pp. 315–323. DOI: https://doi.org/10.1007/s11587-020-00498-5.
- Touail Y., El Moutawakil D. Some new common fixed point theorems for contractive selfmappings with applications, Asian-Eur. J. Math., 2022, vol. 15, no. 4, 2250080. DOI: https://doi.org/10.1142/S1793557122500802.
- Touail Y., El Moutawakil D. Fixed point theorems for new contractions with application in dynamic programming, Vestnik St. Petersb. Univ. Math., 2021, vol. 54, no. 2, pp. 206–212. EDN: ZJHFQW. DOI: https://doi.org/10.1134/s1063454121020126.
- Touail Y., El Moutawakil D. Fixed point theorems on orthogonal complete metric spaces with an application, Int. J. Nonlinear Anal. Appl., 2021, vol. 12, no. 2, pp. 1801–1809. DOI: https://doi.org/10.22075/ijnaa.2021.23033.2464.
- Touail Y., Jaid A., El Moutawakil D. New contribution in fixed point theory via an auxiliary function with an application, Ric. Mat., 2023, vol. 72, no. 1, pp. 181–191. DOI: https://doi.org/10.1007/s11587-021-00645-6.
- Touail Y., Jaid A., El Moutawakil D. Fixed point results for condensing operators via measure of non-compactness, Vestnik St. Petersb. Univ. Math., 2022, vol. 55, pp. 347–352. EDN: KVHCVR. DOI: https://doi.org/10.1134/S1063454122030153.
- Banaś, J., Goebel K. Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60. New York, Basel, Marcel Dekker, 1980, vii+97 pp.
- Sadovskii B. N. A fixed-point principle, Funct. Anal. Appl., 1967, vol. 1, pp. 151–153. DOI: https://doi.org/10.1007/BF01076087.
- Hajji A., Hanebaly E. Commuting mappings and α-compact type fixed point theorems in locally convex spaces, Int. J. Math. Anal., 2007, vol. 1, no. 14, pp. 661–680.
Supplementary files
