Modeling of the spatial distribution of increased pre-seismic deformation areas

Cover Page

Cite item

Full Text

Abstract

We present a novel approach within linear elasticity theory for modeling the spatial distribution of enhanced crustal deformations during earthquake preparation. Our model utilizes the Lamé differential equation system, representing the seismic source as a concentrated force system acting at a point within an elastic half-space. The associated boundary value problem is solved analytically using Green’s functions. The framework computes anomalous pre-seismic deformations at each surface point and quantifies their occurrence frequency relative to background tidal deformation thresholds.
The method was validated using the Global Centroid-Moment-Tensor Catalog for the Kamchatka Peninsula seismic zone. Simulations of deformation patterns preceding earthquakes (1976–2020) reveal:

  • Deformation anomalies predominantly align with the primary coastal fault system;
  • Peak occurrence frequencies (0.6–0.8) correlate with densely populated regions;
  • Distinct temporal variability, with high-activity phases (0.6–0.8) interspersed with low-activity intervals (0.1–0.2).

This approach provides a robust tool for investigating pre-seismic deformation patterns and identifying multidisciplinary precursor phenomena in active tectonic regions.

About the authors

Maksim I. Gapeev

Institute of Cosmophysical Research and Radio Wave Propogation FEB RAS

Author for correspondence.
Email: gapeev.sci@yandex.ru
ORCID iD: 0000-0001-5798-7166
SPIN-code: 1393-2315
Scopus Author ID: 57212685382
https://www.mathnet.ru/person139714

Junior Researcher; Lab. of Acoustic Research

Russian Federation, 684034, Kamchatksy krai, Paratunka, Mirnaya st., 7

Yury V. Marapulets

Institute of Cosmophysical Research and Radio Wave Propogation FEB RAS

Email: marpl@ikir.ru
ORCID iD: 0000-0002-3030-9944
SPIN-code: 2976-5061
Scopus Author ID: 15725296200
https://www.mathnet.ru/person115685

Dr. Phys. & Math. Sci., Associate Professor; Director

Russian Federation, 684034, Kamchatksy krai, Paratunka, Mirnaya st., 7

Alexandra A. Solodchuk

Institute of Cosmophysical Research and Radio Wave Propogation FEB RAS

Email: aleksandra@ikir.ru
ORCID iD: 0000-0002-6761-8978
SPIN-code: 5162-3730
Scopus Author ID: 55533915300
https://www.mathnet.ru/person116312

Cand. Phys. & Math. Sci.; Senior Researcher; Lab. of Acoustic Research

Russian Federation, 684034, Kamchatksy krai, Paratunka, Mirnaya st., 7

References

  1. Sholz C. The Mechanics of Earthquakes and Faulting. Cambridge, Cambridge Univ. Press, 2019, xix+493 pp.
  2. Myachkin V. I., Kostrov B. V., Sobolev G. A., Shamina O. G. Fundamentals of earthquake source physics and earthquake precursors, In: Fizika ochaga zemletriasenii [Earthquake Source Physics]; ed. M. A. Sadovsky. Moscow, Nauka, 1975, pp. 6–29 (In Russian).
  3. Dobrovol’skiy I. P. Matematicheskaia teoriia prognoza i podgotovki tektonicheskogo zemletriaseniia [Mathematical Theory of Prediction and Preparation of a Tectonic Earthquake]. Moscow, Fizmatlit, 2009, 240 pp. (In Russian)
  4. Brace W. F., Byerlee J. D. Stick-slip as a mechanism for earthquakes, Science, 1966, vol. 153, no. 3739, pp. 990–992. DOI: https://doi.org/10.1126/science.153.3739.990.
  5. Kalinin V. A., Rodkin M. V., Tomashevskaya I. S. Geodinamicheskie effekty fizikokhimicheskikh prevrashchenii v tverdoi srede [Geodynamic Effects of Physical and Chemical Transformations in a Solid Medium]. Moscow, Nauka, 157 pp. (in Russian)
  6. Martínez-Garzón P., Poli P. Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature, Commun. Earth Environ., 2024, vol. 5, 120. DOI: https://doi.org/10.1038/s43247-024-01285-y.
  7. Semenov R. M., Kashkovsky V. V, Lopatin M. N. Model of tectonic earthquake preparation and occurrence and its precursors in conditions of crustal stretching, Geodynamics Tectonophysics, 2018, vol. 9, no. 1, pp. 165–175 (In Russian). EDN: XVEWTR. DOI: https://doi.org/10.5800/GT-2018-9-1-0343.
  8. Dobrovolsky I. P. Strain and stress distribution associated with the preparation of a tectonic earthquake, Izv. Phys. Solid Earth, 2003, vol. 39, no. 10, pp. 812–819. EDN: GUJETV.
  9. Rebetsky Yu. L., Lermontova A. S. Registration of supercritical conditions of geologic environment and challenges in earthquake source remote sensing, Vestnik KRAUNTs, Nauki o Zemle, 2016, no. 4, pp. 115–123 (In Russian).
  10. Rebetsky Yu. L., Lermontova A. S. On the long-range influence of earthquake rupture zones, J. Volcanolog. Seismol., 2018, vol. 12, no. 5, pp. 341–352. EDN: UFEBWZ. DOI: https://doi.org/10.1134/S0742046318050068.
  11. Perezhogin A. S., Shevtsov B. M. Models of an intense-deformed condition of rocks before earthquakes and their correlation with geo-acoustic emission, Vychisl. Tekhnol., 2009, vol. 14, no. 3, pp. 48–57 (In Russian). EDN: JXMWHA.
  12. Perezhogin A. S. Modelirovanie zon geoakusticheskoi emissii v usloviiakh deformatsionnykh vozmushchenii [Modeling of Geoacoustic Emission Zones under Conditions of Deformation Disturbances]. Petropavlovsk-Kamchatsky, Vitus Bering Kamchatka State Univ., 2013, 92 pp. (In Russian)
  13. Nazarova L. A., Nazarov L. A. Dilatancy and the formation and evolution of disintegration zones in the vicinity of heterogeneities in a rock mass, J. Min. Sci., 2009, vol. 45, no. 5, pp. 411–419. EDN: MWYMUJ. DOI: https://doi.org/10.1007/s10913-009-0052-3.
  14. Saltykov V. A., Kugaenko Yu. A. Development of near-surface dilatancy zones as a possible cause for seismic emission anomalies before strong earthquakes, Russ. J. Pac. Geol., 2012, vol. 6, no. 1, pp. 86–95. EDN: PDKQFF. DOI: https://doi.org/10.1134/S1819714012010113.
  15. Gapeev M., Marapulets Yu. Modeling locations with enhanced Earth’s crust deformation during earthquake preparation near the Kamchatka Peninsula, Appl. Sci., 2022, vol. 13, no. 1, 290. DOI: https://doi.org/10.3390/app13010290.
  16. Segall P. Earthquake and Volcano Deformation. Princeton, NJ, Princeton Univ. Press, 2010, xxiii+432 pp.
  17. Aki K., Richards P. G. Quantitative Seismology. Sausalito, California, University Science Books, 2002, 704 pp.
  18. Lur’e A. I. Teoriia uprugosti [Theory of Elasticity]. Moscow, Nauka, 1970, 940 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Schematic representation of nine force couples required to construct a force equivalent for an arbitrarily oriented displacement discontinuity in a continuum medium

Download (118KB)
3. Figure 2. Schematic representation of a combination of concentrated forces to obtain a double force along the $x_1$ axis (a) and a double force along the same axis, but with a moment relative to the $x_3$ axis (b)

Download (151KB)
4. Figure 3. Distribution of relative frequencies of increased deformations (1976–2020). Dots show earthquake epicenters, red line indicates the main fault

Download (244KB)
5. Figure 4. Distribution of relative frequencies by year: 2005 (a), 2013 (b), 2016 (c), 2020 (d): circle size corresponds to moment magnitude $M_W$; red line indicates the main fault

Download (829KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).