Elastoplastic analysis of a rotating hollow cylinder with a rigid shaft under temperature gradient
- Authors: Prokudin A.N.1
-
Affiliations:
- Institute of Machinery and Metallurgy, Khabarovsk Federal Research Center, Far-East Branch of RAS
- Issue: Vol 28, No 3 (2024)
- Pages: 462-488
- Section: Mechanics of Solids
- URL: https://journals.rcsi.science/1991-8615/article/view/311016
- DOI: https://doi.org/10.14498/vsgtu2050
- EDN: https://elibrary.ru/RQASZT
- ID: 311016
Cite item
Full Text
Abstract
The article is devoted to thermoelastoplastic analysis of a rotating cylinder with a rigid shaft and fixed ends. The problem statement is based on the theory of infinitesimal deformations, the Tresca yield condition, the flow rule associated with it and the law of linear isotropic hardening.
It is assumed that the cylinder is subject to stationary positive temperature gradient between the inner and outer surfaces. The mechanical and thermophysical parameters of the material are assumed to be independent of temperature. The performed analysis is limited to the loading stage.
It is found that, in the general case, six plastic regions can appear in a cylinder, corresponding to different edges and faces of the Tresca hexagon, and the evolution of plastic flow has qualitative differences from the isothermal case. For each plastic region, an exact solution of the governing equations is found. It has been established that the temperature gradient leads to a significant increase in the absolute value of stresses and plastic deformations in the cylinder and a decrease in elastic and plastic limit angular velocities.
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandr N. Prokudin
Institute of Machinery and Metallurgy, Khabarovsk Federal Research Center, Far-East Branch of RAS
Author for correspondence.
Email: sunbeam_85@mail.ru
ORCID iD: 0000-0002-5156-424X
SPIN-code: 6812-2451
Scopus Author ID: 35722777500
ResearcherId: N-9344-2016
https://www.mathnet.ru/person58902
Cand. Tech. Sci.; Senior Researcher; Lab. of Problems of Materials and Products Construction and Processing
Russian Federation, 681005, Komsomolsk-on-Amur, Metallurgov st., 1References
- Gamer U., Sayir M. Elastic-plastic stress distribution in a rotating solid shaft, ZAMM, Z. Angew. Math. Mech., 1984, vol. 35, pp. 601–617. DOI: https://doi.org/10.1007/BF00952107.
- Gamer U., Mack W., Varga I. Rotating elastic-plastic solid shaft with fixed ends, Int. J. Eng. Sci., 1997, vol. 35, no. 3, pp. 253–267. DOI: https://doi.org/10.1016/S0020-7225(96)00085-7.
- Mack W. The rotating elastic-plastic solid shaft with free ends, Techn. Mech., 1991, vol. 12, no. 2, pp. 119–124.
- Gamer U., Lance R. H. Stress distribution in a rotating elastic-plastic tube, Acta Mech., 1983, vol. 50, pp. 1–8. DOI: https://doi.org/10.1007/BF01170437.
- Mack W. Rotating elastic-plastic tube with free ends, Int. J. Solids Struct., 1991, vol. 27, no. 11, pp. 1461–1476. DOI: https://doi.org/10.1016/0020-7683(91)90042-E.
- Kamal S. M., Perl M., Bharali D. Generalized plane strain study of rotational autofrettage of thick-walled cylinders — Part I: Theoretical analysis, J. Pressure Vessel Technol., 2019, vol. 141, no. 5, 051201. DOI: https://doi.org/10.1115/1.4043591.
- Prokudin A. N. Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading, ZAMM, Z. Angew. Math. Mech., 2020, vol. 100, no. 3, e201900213. DOI: https://doi.org/10.1002/zamm.201900213.
- Prokudin A. N., Firsov S. V. Elastoplastic deformation of a rotating hollow cylinder with a rigid casing, PNRPU Mechanics Bulletin, 2019, no. 4, pp. 120–135 (In Russian). EDN: VUXFSF. DOI: https://doi.org/10.15593/perm.mech/2019.4.12.
- Lindner T., Mack W. Residual stresses in an elastic-plastic solid shaft with fixed ends after previous rotation, ZAMM, Z. Angew. Math. Mech., 1998, vol. 78, no. 2, pp. 75–86. DOI: https://doi.org/10.1002/(SICI)1521-4001(199802)78:2<75::AID-ZAMM75>3.0.CO;2-V.
- Prokudin A. N. Elastic-plastic analysis of rotating solid shaft by maximum reduced stress yield criterion, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 1, pp. 74–94 (In Russian). EDN: LJTYOU. DOI: https://doi.org/10.14498/vsgtu1737.
- Prokudin A. N. Schmidt–Ishlinskii yield criterion and a rotating cylinder with a rigid inclusion, J. Appl. Comput. Mech., 2021, vol. 7, no. 2, pp. 858–869. EDN: JNCMTU. DOI: https://doi.org/10.22055/jacm.2020.35648.2704.
- Prokudin A. N., Firsov S. V. Elastoplastic deformation of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield, J. Appl. Ind. Math., 2022, vol. 16, no. 2, pp. 313–332. EDN: KLJMPP. DOI: https://doi.org/10.1134/S1990478922020120.
- Prokudin A. N., Burenin A. A. Unified yield criterion and elastoplastic analysis of a rotating solid cylinder, J. Appl. Mech. Techn. Phys., 2021, vol. 62, no. 5, pp. 760–770. EDN: CAKHOD. DOI: https://doi.org/10.1134/S0021894421050072.
- Eraslan A. N. On the linearly hardening rotating solid shaft, Eur. J. Mec. A – Solids, 2003, vol. 22, no. 2, pp. 295–307. DOI: https://doi.org/10.1016/S0997-7538(02)00002-5.
- Zare H. R., Darijani H. A novel autofrettage method for strengthening and design of thickwalled cylinders, Materials & Design, 2019, vol. 105, pp. 366–374. DOI: https://doi.org/10.1016/j.matdes.2016.05.062.
- Zare H. R., Darijani H. Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage, Int. J. Mech. Sci., 2017, vol. 124–125, pp. 1–8. DOI: https://doi.org/10.1016/j.ijmecsci.2017.02.015.
- Eraslan A. N. Von Mises’ yield criterion and nonlinearly hardening rotating shafts, Acta Mech., 2004, vol. 168, no. 3–4, pp. 129–144. DOI: https://doi.org/10.1007/s00707-004-0088-z.
- Eraslan A. N., Mack W. A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts, Forsch. Ingenieurwesen, 2005, vol. 69, pp. 65–75. DOI: https://doi.org/10.1007/s10010-004-0138-7.
- Prokudin A. N. Exact elastoplastic analysis of a rotating hollow cylinder made of powerlaw hardening material, Mater. Phys. Mech., 2023, vol. 51, no. 2, pp. 96–111. EDN: FEBDDA. DOI: https://doi.org/10.18149/MPM.5122023_9.
- Akhavanfar S., Darijani H., Darijani F. Constitutive modeling of high strength steels; application to the analytically strengthening of thick-walled tubes using the rotational autofrettage, Eng. Struct., 2023, vol. 278, 115516. DOI: https://doi.org/10.1016/j.engstruct.2022.115516.
- Akis T., Eraslan A.N. Exact solution of rotating FGM shaft problem in the elastoplastic state of stress, Arch. Appl. Mech., 2007, vol. 77, no. 10, pp. 745–765. DOI: https://doi.org/10.1007/s00419-007-0123-3.
- Eraslan A. N., Akis T. The stress response of partially plastic rotating FGM hollow shafts: Analytical treatment for axially constrained ends, Mech. Based Design Struct. Machines, 2006, vol. 34, no. 3, pp. 241–260. DOI: https://doi.org/10.1080/15397730600779285.
- Nejad M. Z., Fatehi P. Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials, Int. J. Eng. Sci., 2015, vol. 86, pp. 26–43. DOI: https://doi.org/10.1016/j.ijengsci.2014.10.002.
- Argeso H., Eraslan A. N. A computational study on functionally graded rotating solid shafts, Int. J. Comput. Methods Eng. Sci. Mech., 2007, vol. 8, no. 6, pp. 391–399. DOI: https://doi.org/10.1080/15502280701577842.
- Varmazyari S., Shokrollahi H. Analytical solution for strain gradient plasticity of rotating functionally graded thick cylinders, Int. J. Appl. Mech., 2020, vol. 12, no. 07, 2050082. DOI: https://doi.org/10.1142/S1758825120500829.
- Eraslan A. N., Arslan E., Mack W. The strain hardening rotating hollow shaft subject to a positive temperature gradient, Acta Mech., 2007, vol. 194, no. 1–4, pp. 191–211. DOI: https://doi.org/10.1007/s00707-007-0456-6.
- Arslan E., Mack W., Eraslan A. N. The rotating elastic-plastic hollow shaft conveying a hot medium, Forsch. Ingenieurwesen, 2010, vol. 74, pp. 27–39. DOI: https://doi.org/10.1007/s10010-010-0113-4.
- Arslan E., Mack W., Eraslan A. N. Effect of a temperature cycle on a rotating elasticplastic shaft, Acta Mech., 2008, vol. 195, no. 1–4, pp. 129–140. DOI: https://doi.org/10.1007/s00707-007-0549-2.
- Nejad M. Z., Alamzadeh N., Hadi A. Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Compos. B: Eng., 2018, vol. 154, pp. 410–422. DOI: https://doi.org/10.1016/j.compositesb.2018.09.022.
- Ebrahimi T., Nejad M. Z., Jahankoha H., Hadi A. Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels, Steel Compos. Struct., 2021, vol. 38, no. 2, pp. 189–211. DOI: https://doi.org/10.12989/scs.2021.38.2.189.
- Apatay T., Arslan E., Mack W. Effects of homogeneous and inhomogeneous heating on rotating shrink fits with annular inclusion and functionally graded hub, J. Thermal Stresses, 2019, vol. 42, no. 11, pp. 1458–1479. DOI: https://doi.org/10.1080/01495739.2019.1638856.
- Hajisadeghian A., Masoumi A., Parvizi A. Analytical investigation of elastic and plastic behavior of rotating double-walled FGM-homogenous hollow shafts, Arch. Appl. Mech., 2021, vol. 91, pp. 1343–1369. DOI: https://doi.org/10.1007/s00419-020-01826-9.
- Eldeeb A. M., Shabana Y. M., Elsawaf A. Investigation of the thermoelastoplastic behaviors of multilayer FGM cylinders, Compos. Struct., 2021, vol. 276, pp. 114523. DOI: https://doi.org/10.1016/j.compstruct.2021.114523.
- Güven U. The fully plastic rotating disk with rigid inclusion, ZAMM, Z. Angew. Math. Mech., 1997, vol. 77, no. 9, pp. 714–716. DOI: https://doi.org/10.1002/zamm.19970770912.
- Güven U. Elastic-plastic rotating disk with rigid inclusion, Mech. Struct. Machines, 1999, vol. 27, no. 1, pp. 117–128. DOI: https://doi.org/10.1080/08905459908915691.
- Parmaksizoğlu C., Güven U. Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient, Mech. Struct. Machines, 1998, vol. 26, no. 1, pp. 9–20. DOI: https://doi.org/10.1007/s00419-020-01826-9.
- Eraslan A. N., Akis T. On the elastic-plastic deformation of a rotating disk subjected to a radial temperature gradient, Mech. Based Design Struct. Machines, 2003, vol. 31, no. 4, pp. 529–561. DOI: https://doi.org/10.1081/SME-120023170.
- Koiter W. T. Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface, Q. Appl. Math., 1953, vol. 11, no. 3, pp. 350–354. DOI: https://doi.org/10.1090/qam/59769.
- Meng Q., Zhao J., Mu Zh., Zhai R., Yu G. Springback prediction of multiple reciprocating bending based on different hardening models, J. Manufact. Proces., 2022, vol. 76, pp. 251–263. DOI: https://doi.org/10.1016/j.jmapro.2022.01.070.
Supplementary files





