Implicit iterative scheme based on the pseudo--inversion algorithm and its application

Cover Page

Cite item

Full Text

Abstract

A new version of the implicit iterative scheme is proposed for the implementation of which only matrix-vector computational procedures are required. This makes the proposed computational scheme potentially highly efficient for solving a wide class of high-dimensional problems on modern high-performance computing platforms, such as Nvidia Cuda. It is shown that the proposed algorithms can be used to solve ill-conditioned linear systems and least squares problems, as well as to construct iterative regularization algorithms. The results of computational experiments are presented, confirming the effectiveness of the proposed computational algorithms.

About the authors

Alexandr I. Zhdanov

Samara State Technical University; Samara State Technical University, Novokuybyshevsk Branch

Author for correspondence.
Email: zhdanovaleksan@yandex.ru
ORCID iD: 0000-0001-6082-9097
https://www.mathnet.ru/person41724

Dr. Phys. & Math. Sci., Professor; Professor; Dept. of Applied Mathematics and
Informatics; Professor; Dept. of Electrical Power Engineering, Electrical Engineering, and Automation Process Technology

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244; 446200, Novokuybyshevsk, Mironova st., 5

Yuri V. Sidorov

Samara State Technical University

Email: linuxboy2007@gmail.com
ORCID iD: 0000-0002-8138-9200
https://www.mathnet.ru/person114787

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Applied Mathematics and Informatics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Sun L., Wei Y., Zhou J. On an iterative method for solving the least squares problem of rank-deficient systems, Int. J. Comp. Math., 2015, vol. 92, no. 3, pp. 532–541. DOI: https://doi.org/10.1080/00207160.2014.900173.
  2. Zhdanov A. I. Implicit iterative schemes based on singular decomposition and regularizing algorithms, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 3, pp. 549–556. EDN: PJITAX. DOI: https://doi.org/10.14498/vsgtu1592.
  3. Zhdanov A. I. Implicit iterative schemes based on augmented linear systems, Dokl. Math., 2022, vol. 105, no. 2, pp. 131–134. EDN: SNWVMI. DOI: https://doi.org/10.1134/S106456242202020X.
  4. Ben–Israel A., Greville T. N. E. Generalized Inverses: Theory and Applications. New York, Springer, 2003, xv+420 pp. DOI: https://doi.org/10.1007/b97366.
  5. Riley J. D. Solving systems of linear equations with a positive definite, symmetric, but possibly ill-conditioned matrix, Math. Comp., 1955, vol. 9, pp. 96–101. DOI: https://doi.org/10.1090/S0025-5718-1955-0074915-1.
  6. Esmaeili H., Erfanifar R., Rashidi M. An efficient Schulz-type method to compute the Moore–Penrose inverse, Int. J. Industr. Math., 2018, vol. 10, no. 2, pp. 221–228.
  7. Toutounian F., Soleymani F. An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix, Appl. Math. Comp., 2013, vol. 224, pp. 671–680. DOI: https://doi.org/10.1016/j.amc.2013.08.086.
  8. Golub G. H. van Loan C. F. Matrix Computations. Baltimore, Johns Hopkins Univ., 2013, xxiv+756 pp.
  9. Schulz G. Iterative Berechung der reziproken Matrix, ZAMM, 1933, vol. 13, no. 1, pp. 57–59. DOI: https://doi.org/10.1002/zamm.19330130111.
  10. Hansen P. C. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algor., 1994, vol. 6, pp. 1–53. DOI: https://doi.org/10.1007/BF02149761.
  11. Pillonetto G., Chen T., Chiuso A., et al. Regularized System Identification: Learning Dynamic Models from Data. Cham, Springer, 2022, xxiv+377 pp. DOI: https://doi.org/10.1007/978-3-030-95860-2.
  12. Wang E., Zhang Q., Shen B. et al. Intel math kernel library, In: High-Performance Computing on the Intel® Xeon Phi™. Cham, Springer, 2014, pp. 167–188. DOI: https://doi.org/10.1007/978-3-319-06486-4_7.
  13. Fatica M. CUDA toolkit and libraries, In: 2008 IEEE Hot Chips 20 Symposium (24–26 August 2008). Stanford, CA, USA, 2008, pp. 1–22. DOI: https://doi.org/10.1109/HOTCHIPS.2008.7476520.
  14. Zare H., Hajarian M. Determination of regularization parameter via solving a multiobjective optimization problem, Appl. Num. Math., 2020, vol. 156, pp. 542–554. DOI: https://doi.org/10.1016/j.apnum.2020.05.021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Convergence rate of the iterative algorithm (10) when solving ill-conditioned systems of linear equations (1)

Download (104KB)
3. Figure 2. Convergence rate of the iterative process when solving the perturbed problem (13); the horizontal line corresponds to the value $\tau \delta$

Download (236KB)

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).