One way of summing multidimensional series

Cover Page

Cite item

Full Text

Abstract

It is known that in analysis courses, multiple series are considered only at a conceptual level, and their simplest properties are provided. Two widely used methods for summing multiple Fourier series are the spherical and rectangular methods. The present study is devoted to a new method of proving the convergence of multidimensional series by reducing them to a one-dimensional series, allowing applicating known statements for one-dimensional series to multidimensional ones. Examples of justifying the convergence of numerical and functional series are provided as an illustration of this summing method.

About the authors

Kamil B. Sabitov

Sterlitamak Branch of the Ufa University of Science and Technology

Author for correspondence.
Email: sabitov_fmf@mail.ru
ORCID iD: 0000-0001-9516-2704
http://www.mathnet.ru/person11101

Dr. Phys. & Math. Sci., Professor; Senior Researcher; Sector of Basic Scientific Research

Russian Federation, 453103, Sterlitamak, Lenin Ave., 49

References

  1. Fichtenholz G. M. Kurs differentsial’nogo i integral’nogo ischisleniia [Course of Differential and Integral Calculus], vol. 1. Moscow, Fizmatlit, Laboratoriia Znanii, 2003, 863 pp. (In Russian)
  2. Il’in V. A., Sadovnichii V. A., Sendov Bl. Kh. Matematicheskii analiz [Mathematical Analysis], vol. 2. Moscow, Moscow State Univ., 1987, 358 pp.
  3. Kudryavtsev L. D. Kurs matematicheskogo analiza [A Course of Mathematical Analysis], vol. 1. Moscow, Vyssh. shk., 1981, 584 pp. (In Russian)
  4. Bugrov Ya. S., Nikol’skii S. M. Vysshaia matematika. Differentsial’noe i integral’noe ischislenie [Higher Mathematics. Differential and Integral Calculus]. Moscow, Drofa, 2005, 509 pp. (In Russian). EDN: QJPBXF.
  5. Chelidze V. G. Nekotorye metody summirovaniia dvoinykh riadov i dvoinykh integralov [Some Methods of Summation of Double Series and Double Integrals]. Tbilisi, Tbilisi Univ., 1977, 399 pp. (In Russian)
  6. Yanushauskas A. I. Dvoinye riady [Double Series]. Novosibirsk, Nauka, 1980, 224 pp. (In Russian)
  7. Sabitov K. B. Initial-boundary problem for a three-dimensional equation of mixed parabolichyperbolic type, In: Modern Problems of Mathematics and Mechanics. Moscow, MAKS Press, 2019, pp. 369–372 (In Russian).
  8. Sabitov K. B. Dirichlet problem for a two-dimensional wave equation, In: Modern Problems of Computational Mathematics and Mathematical Physics. Moscow, Moscow State Univ., 2019, pp. 58–59 (In Russian).
  9. Sabitov K. B., Sidorov S. N. Initial-boundary value problem for a three-dimensional equation of the parabolic-hyperbolic type, Differ. Equat., 2021, vol. 57, no. 8, pp. 1042–1052. EDN: OOAAGT. DOI: https://doi.org/10.1134/S0012266121080085.
  10. Sabitov K. B., Sidorov S. N. Initial-boundary problem for a three-dimensional inhomogeneous equation of parabolic-hyperbolic type, Lobachevskii J. Math., 2020, vol. 41, no. 11, pp. 2257–2268. EDN: GBAUPE. DOI: https://doi.org/10.1134/S1995080220110190.
  11. Sabitov K. B. Initial-boundary value problems for equation of oscillations of a rectangular plate, Russian Math. (Iz. VUZ), 2021, vol. 65, no. 10, pp. 52–62. EDN: FCMYHQ. DOI: https://doi.org/10.3103/S1066369X21100054.
  12. Il’in V. A., Pozniak E. G. Osnovy matematicheskogo analiza [Fundamentals of Mathematical Analysis] Part II. Moscow, Fizmatlit, 2001, 453 pp. (In Russian). EDN: UGLQPL.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).