Mathematical modeling of sunspot nucleation at the photospheric level of the Sun
- Authors: Romanov D.V.1, Romanov K.V.1, Romanov V.A.2, Stepanov E.A.2, Lebedev A.A.2
-
Affiliations:
- Krasnoyarsk State Pedagogical University
- Saratov State University
- Issue: Vol 27, No 4 (2023)
- Pages: 723-736
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journals.rcsi.science/1991-8615/article/view/311001
- DOI: https://doi.org/10.14498/vsgtu2015
- EDN: https://elibrary.ru/JEEWMQ
- ID: 311001
Cite item
Full Text
Abstract
In the present study, the initial stage of the generation of a group of sunspots at the photospheric level of the Sun is studied by computer simulation. The development of the nonlinear phase of the Parker instability of large-scale oscillations of magnetic fields in the middle layers of the convective zone is numerically modeled. The process of adiabatic cooling of a thin magnetic tube that floats from depths of the order of 100,000 km to the
photospheric level is studied. The results of the calculations make it possible to analyze in detail the change in the magnetogasdynamic parameters of the tube at different depths of the convective zone, and to obtain the values of the physical parameters of emerging sunspots that can be compared with observational data.
The paper investigates the physical mechanism of the time delay in the formation of the head part of the active region compared with the formation of the sprayed tail part. The problem of stability of nascent active regions is also being investigated. The physical parameters determining the stability of the formed active regions at various phases of the solar activity cycle are highlighted. The physical mechanism of generation of a powerful shock wave flux in the initial stage of the nucleation of the active region, which makes a significant contribution to the abnormal heating of the solar atmosphere recorded in the observational data, has been determined.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitriy V. Romanov
Krasnoyarsk State Pedagogical University
Author for correspondence.
Email: d-v-romanov@ya.ru
ORCID iD: 0000-0002-4982-5973
https://www.mathnet.ru/person183792
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Computer Science and Information Technology in Education
Russian Federation, 660049, Krasnoyarsk, Ada Lebedeva st., 89Konstantin V. Romanov
Krasnoyarsk State Pedagogical University
Email: k-v-romanov@ya.ru
ORCID iD: 0000-0001-7320-2517
https://www.mathnet.ru/person183791
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics and Methods of Teaching Mathematics
Russian Federation, 660049, Krasnoyarsk, Ada Lebedeva st., 89Valeriy A. Romanov
Saratov State University
Email: valeriy.a.romanov@yandex.ru
ORCID iD: 0000-0001-9876-0822
https://www.mathnet.ru/person183794
Dr. Phys. & Math. Sci.; Professor; Dept. of Mathematical Cybernetics and Computer Science
Russian Federation, 410012, Saratov, Astrakhanskaya st., 83Evgeniy A. Stepanov
Saratov State University
Email: ev_stepanof@yandex.ru
ORCID iD: 0000-0002-2050-2724
https://www.mathnet.ru/person203707
Postgraduate Student; Dept. of Mathematical Cybernetics and Computer Science
Russian Federation, 410012, Saratov, Astrakhanskaya st., 83Anton A. Lebedev
Saratov State University
Email: anon20016@gmail.com
ORCID iD: 0000-0002-8241-1916
https://www.mathnet.ru/person203708
Postgraduate Student; Dept. of Mathematical Cybernetics and Computer Science
Russian Federation, 410012, Saratov, Astrakhanskaya st., 83References
- Bray R. J., Loughhead R. E. Sunspots. New York, Dover Publ., 1979, 303 pp.
- Obridko V. N. Solnechnye piatna i kompleksy aktivnosti [Sunspots and Activity Complexes]. Moscow, Nauka, 1985, 255 pp. (In Russian)
- Tlatov A. G. Lifetime of sunspots and pores, Sol. Phys., 2023, vol. 298, 93. DOI: https://doi.org/10.1007/s11207-023-02186-7.
- Parker E. N. Cosmical Magnetic Fields. Their Origin and their Activity, The International Series of Monographs on Physics. Oxford, Clarendon Press, 1979, xvii+841 pp.
- Tlatov A. G. Dark dots on the photosphere and their counting in the sunspot index, Sol. Phys., 2022, vol. 297, 67, arXiv: 2205.13142 [astro-ph.SR]. DOI: https://doi.org/10.1007/s11207-022-02002-8.
- Alissandrakis C. E., Vial J-C. Explosive events in the quiet Sun near and beyond the solar limb observed with the Interface Region Imaging Spectrograph (IRIS), Sol. Phys., 2023, vol. 298, 18, arXiv: 2301.07190 [astro-ph.SR]. DOI: https://doi.org/10.1007/s11207-023-02111-y.
- Grigor’ev V. M., Ermakova L. V., Khlystova A. I. Emergence of magnetic flux at the solar surface and the origin of active regions, Astron. Rep., 2009, vol. 53, no. 9, pp. 869–878. EDN: MWTYGB. DOI: https://doi.org/10.1134/S1063772909090108.
- Alekseenko S. V., Dudnikova G. I., Romanov V. A., et al. Magnetic field instabilities in the solar convective zone, Rus. J. Eng. Thermophys., 2000, vol. 10, pp. 243–262.
- Spruit H. C., Zweibel E. G. Convective instability of thin flux tubes, Sol. Phys., 1979, vol. 62, no. 1, pp. 15–22. EDN: BKMUKO. DOI: https://doi.org/10.1007/BF00150128.
- Ruderman M. S., Petrukhin N. S. Nonlinear generation of fluting perturbations by kink mode in a twisted magnetic tube, Sol. Phys., 2022, vol. 297, no. 9, 116. EDN: ASYPRH. DOI: https://doi.org/10.1007/s11207-022-02054-w.
- Christensen–Dalsgaard J., Däppen W., Ajukov S. V., et al. The current state of Solar modeling, Science, 1996, vol. 272, no. 5266, pp. 1286–1292. DOI: https://doi.org/10.1126/science.272.5266.1286.
- Parker E. N. Theoretical properties of Omega-loops in the convective zone of the Sun. 1: Emerging bipolar magnetic regions, Astrophys. J., 1994, vol. 433, pp. 867–874. DOI: https://doi.org/10.1086/174695.
- Stepanov E. A., Maiorov A. O., Romanov K. V., et al. Mathematical modeling of the development of the Parker instability of large-scale oscillations of magnetic fields in the convective zone of the Sun, Izv. Sarat. Univ. Physics, 2021, vol. 21, no. 2, pp. 102–115 (In Russian). EDN: DZYYVB. DOI: https://doi.org/10.18500/1817-3020-2021-21-2-106-115.
- Zurbriggen E., Cécere M., Sieyra M. V., et al. An MHD study of large-amplitude oscillations in Solar filaments, Sol. Phys., 2021, vol. 296, 173, arXiv: 2110.07687 [astro-ph.SR]. DOI: https://doi.org/10.1007/s11207-021-01908-z.
- Hamada A., Asikainen T., Mursula K. New homogeneous dataset of Solar EUV synoptic maps from SOHO/EIT and SDO/AIA, Sol. Phys., 2019, vol. 295, no. 1, 2. EDN: BVEEJG. DOI: https://doi.org/10.1007/s11207-019-1563-y.
Supplementary files










