Approximate analytical solutions of the nonlinear fractional order financial model by two efficient methods with a comparison study

Cover Page

Cite item

Full Text

Abstract

The financial system has become prominent and important in global economics, because the key to stabilizing the economy is to secure or control the financial system or market.
The goal of this study is to determine whether or not the approximate analytical series solutions obtained by the residual power series method and Elzaki transform decomposition method of the fractional nonlinear financial model satisfy economic theory. The fractional derivative is used in the sense of the Caputo derivative.
The results are depicted numerically and in figures that show the behavior of the approximate solutions of the interest rate, investment demand, and price index. Both methods yielded results in accordance with economic theory, which established that researchers could apply these two methods to solve various types of fractional nonlinear problems that arise in financial systems.

About the authors

Muhammad Imran Liaqat

Government College University; National College of Business Administration & Economics

Email: imranliaqat50@yahoo.com
ORCID iD: 0000-0002-5732-9689
https://www.mathnet.ru/person200797

PhD Student, Abdus Salam School of Mathematical Sciences; Lecturer, Dept. of Mathematics

Pakistan, 54600, Lahore; 54660, Lahore

Adnan Khan

National College of Business Administration & Economics

Email: adnankhantariq@ncbae.edu.pk
ORCID iD: 0000-0002-1490-8576
https://www.mathnet.ru/person211993

Full Professor, Dept. of Mathematics

Pakistan, 54660, Lahore

Alia Irshad

National College of Business Administration & Economics

Email: aaliairshad15@gmail.com
ORCID iD: 0009-0002-2282-0627
https://www.mathnet.ru/person211994

Lecturer, Dept. of Mathematics

Pakistan, 54660, Lahore

Ali Akgul

Lebanese American University; Siirt University; Near East University

Author for correspondence.
Email: aliakgul00727@gmail.com
ORCID iD: 0000-0001-9832-1424
https://www.mathnet.ru/person200037

PhD in Math, Full Professor; Dept. of Computer Science and Mathematics; Dept. of Mathematics, Art and Science Faculty; Dept. of Mathematics, Mathematics Research Center

Turkey, Lebanon, 1102 2801, Beirut; Turkey, 56100, Siirt; Turkey, 99138, Nicosia

Evgeniy Yu. Prosviryakov

Ural Federal University; Institute of Engineering Science, RAS (Ural Branch)

Email: evgen_pros@mail.ru
ORCID iD: 0000-0002-2349-7801
SPIN-code: 3880-5690
Scopus Author ID: 57189461740
ResearcherId: E-6254-2016
http://www.mathnet.ru/person41426

Dr. Phys. & Math. Sci.; Dept. of Information Technologies and Control Systems; Sect. of Nonlinear Vortex Hydrodynamics

Russian Federation, 620137, Ekaterinburg; 620049, Ekaterinburg

References

  1. Sun H., Zhang Y., Baleanu D., et al. A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 64, pp. 213–231. DOI: https://doi.org/10.1016/j.cnsns.2018.04.019.
  2. Ramani P., Khan A. M., Suthar D. L., Kumar D. Approximate analytical solution for nonlinear Fitzhugh–Nagumo equation of time fractional order through fractional reduced differential transform method, Int. J. Appl. Comput. Math., 2022, vol. 8, no. 2, 61. DOI: https://doi.org/10.1007/s40819-022-01254-z.
  3. Yadav L. K., Agarwal G., Suthar D. L., Purohit S. D. Time-fractional partial differential equations: a novel technique for analytical and numerical solutions, Arab J. Basic Appl. Sci., 2022, vol. 29, no. 1, pp. 86–98. DOI: https://doi.org/10.1080/25765299.2022.2064075.
  4. Tenreiro Machado J. A., Silva M. F., Barbosa R. S., et al. Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010, vol. 2010, 639801. DOI: https://doi.org/10.1155/2010/639801.
  5. Yasmin H. Application of aboodh homotopy perturbation transform method for fractionalorder convection-reaction-diffusion equation within Caputo and Atangana–Baleanu operators, Symmetry, 2023, vol. 15, no. 2, 453. DOI: https://doi.org/10.3390/sym15020453.
  6. Chanchlani L., Agrawal M., Pandey R. M., et al. Applications of Elzaki decomposition method to fractional relaxation-oscillation and fractional biological population equations, Appl. Math. Sci. Eng., 2023, vol. 31, no. 1, 2154766. DOI: https://doi.org/10.1080/27690911.2022.2154766.
  7. Pareek N., Gupta A., Agarwal G., Suthar D. L. Natural transform along with HPM technique for solving fractional ADE, Adv. Math. Phys., 2021, vol. 2021, 9915183. DOI: https://doi.org/10.1155/2021/9915183.
  8. Yasmin H. Numerical analysis of time-fractional Whitham–Broer–Kaup equations with exponential-decay kernel, Fractal Fract., 2022, vol. 6, no. 3, 142. DOI: https://doi.org/10.3390/fractalfract6030142.
  9. Naeem M., Yasmin H., Shah N. A., et al. Analytical approaches for approximate solution of the time-fractional coupled Schrödinger–KdV equation, Symmetry, 2022, vol. 14, no. 12, 2602. DOI: https://doi.org/10.3390/sym14122602.
  10. Naeem M., Yasmin H., Shah R., et al. A comparative study of fractional partial differential equations with the help of Yang transform, Symmetry, 2023, vol. 15, no. 1, 146. DOI: https://doi.org/10.3390/sym15010146.
  11. Naeem M., Yasmin H., Shah R., et al. Investigation of fractional nonlinear regularized longwave models via Novel techniques, Symmetry, 2023, vol. 15, no. 1, 220. DOI: https://doi.org/10.3390/sym15010220.
  12. Baskonus H. M., Mekkaoui T., Hammouch Z., Bulut H. Active control of a chaotic fractional order economic system, Entropy, 2015, vol. 17, no. 8, pp. 5771–5783. DOI: https://doi.org/10.3390/e17085771.
  13. Bonyah E., Atangana A., Chand M. Analysis of 3D IS-LM macroeconomic system model within the scope of fractional calculus, Chaos, Solitons & Fractals: X, 2019, vol. 2, 100007. DOI: https://doi.org/10.1016/j.csfx.2019.100007.
  14. David S. A., Fischer C., Machado J. T. Fractional electronic circuit simulation of a nonlinear macroeconomic model, AEU – Int. J. Electron. Comm., 2018, vol. 84, pp. 210–220. DOI: https://doi.org/10.1016/j.aeue.2017.11.019.
  15. Owolabi K. M., Gómez–Aguilar J. F., Fernndez–Anaya, et al. Modelling of chaotic processes with caputo fractional order derivative, Entropy, 2020, vol. 22, no. 9, 1027. DOI: https://doi.org/10.3390/e22091027.
  16. Xin B., Li Y. 0-1 test for chaos in a fractional order financial system with investment incentive, Abstr. Appl. Anal, 2013, vol. 2013, 876298. DOI: https://doi.org/10.1155/2013/876298.
  17. El-Ajou A., Arqub O. A., Momani S., et al. A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 2015, vol. 257, pp. 119–133. DOI: https://doi.org/10.1016/j.amc.2014.12.121.
  18. Xiaobing P., Yang X., Skandari M. H. N., et al. A new high accurate approximate approach to solve optimal control problems of fractional order via efficient basis functions, Alexandria Eng. J., 2022, vol. 61, no. 8, pp. 5805–5818. DOI: https://doi.org/10.1016/j.aej.2021.11.007.
  19. Liaqat M. I., Akgül A. A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Solitons Fractals, 2022, vol. 162. DOI: https://doi.org/10.1016/j.chaos.2022.112487.
  20. Liaqat M. I., Khan A., Alam M. A., et al. Approximate and closed-form solutions of Newell–Whitehead–Segel equations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022, vol. 2022, 6752455. DOI: https://doi.org/10.1155/2022/6752455.
  21. Rezapour S., Liaqat M. I., Etemad S. An effective new iterative method to solve conformable Cauchy reaction-diffusion equation via the Shehu transform, J. Math., 2022, vol. 2022, 4172218. DOI: https://doi.org/10.1155/2022/4172218.
  22. Liaqat M. I., Etemad S., Rezapour S., Park, C. A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 2022, vol. 7, no. 9, pp. 16917-16948. DOI: https://doi.org/10.3934/math.2022929.
  23. Liaqat M. I., Akgül A., Abu-Zinadah H. Analytical investigation of some time-fractional Black–Scholes models by the Aboodh residual power series method, Mathematics, 2023, vol. 11, no. 2, 276. DOI: https://doi.org/10.3390/math11020276.
  24. Alquran M. Analytical solutions of fractional foam drainage equation by residual power series method, Math. Sci., 2014, vol. 8, no. 4, pp. 153–160. DOI: https://doi.org/10.1007/s40096-015-0141-1.
  25. Prakasha D. G., Veeresha P., Baskonus H. M. Residual power series method for fractional Swift–Hohenberg equation, Fractal Fract., 2019, vol. 3, no. 1, 9. DOI: https://doi.org/10.3390/fractalfract3010009.
  26. Shah N. A., Chung J. D. The analytical solution of fractional-order Whitham–Broer–Kaup equations by an Elzaki decomposition method, Numer. Methods Partial Differential Eq., 2024, vol. 40, e22748. DOI: https://doi.org/10.1002/num.22748.
  27. Varsoliwala A. C., Singh T. R. Mathematical modeling of atmospheric internal waves phenomenon and its solution by Elzaki Adomian decomposition method, J. Ocean Eng. Sci.,2022, vol. 7, no. 3, pp. 203–212. DOI: https://doi.org/10.1016/j.joes.2021.07.010.
  28. Farman M., Akgül A., Baleanu D., et al. Analysis of fractional order chaotic financial model with minimum interest rate impact, Fractal Fract., 2020, vol. 4, no. 3, 43. DOI: https://doi.org/10.3390/fractalfract4030043.
  29. Kumar A., Kumar S. Residual power series method for fractional Burger types equations, Nonlinear Eng., 2016, vol. 5, no. 4, pp. 235–244. DOI: https://doi.org/10.1515/nleng-2016-0028.
  30. Alquran M., Jaradat H. M., Syam M. I. Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method., Nonlinear Dyn., 2017, vol. 90, no. 4, pp. 2525–2529. DOI: https://doi.org/10.1007/s11071-017-3820-7.
  31. Moaddy K., Al-Smadi M., Hashim I. A novel representation of the exact solution for differential algebraic equations system using residual power-series method, Discrete Dyn. Nat. Soc., 2015, vol. 2015, 205207. DOI: https://doi.org/10.1155/2015/205207.
  32. Rashid S., Hammouch Z., Aydi H., et al. Novel computations of the time-fractional Fisher’s model via generalized fractional integral operators by means of the Elzaki transform, Fractal Fract., 2021, vol. 5, no. 3, 94. DOI: https://doi.org/10.3390/fractalfract5030094.
  33. Khan A., Liaqat M. I., Younis M., Alam A. Approximate and exact solutions to fractional order Cauchy reaction-diffusion equations by new combine techniques, J. Math., 2021, vol. 2021, 5337255. DOI: https://doi.org/10.1155/2021/5337255.
  34. Liaqat M. I., Khan A., Akgül A., Ali M. S. A novel numerical technique for fractional ordinary differential equations with proportional delay, J. Funct. Spaces, 2022, vol. 2022, 6333084. DOI: https://doi.org/10.1155/2022/6333084.
  35. Jena R. M., Chakraverty S. Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform, SN Appl. Sci., 2019, vol. 1, 16. DOI: https://doi.org/10.1007/s42452-018-0016-9.
  36. Hajira, Khan H., Khan A., et al. An approximate analytical solution of the Navier–Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020, vol. 2020, 622. DOI: https://doi.org/10.1186/s13662-020-03058-1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The graphic behavior of the 4th step approximate solutions obtained by residual power series method of $L(t)$, $M(t)$, and $N(t)$ at $\alpha=0.5$, 0.6, 0.7, 0.8, 0.9, and 1.0

Download (481KB)
3. Figure 2. The graphic behavior of the 4th step approximate solutions obtained by residual power series method of $L(t)$, $M(t)$, and $N(t)$ for $d=0.6$, 0.7, 0.8, and 0.9

Download (310KB)
4. Figure 3. The graphic behavior of the 4th step approximate solutions obtained by Elzaki transform decomposition method of $L(t)$, $M(t)$, and $N(t)$ at $\alpha=0.5$, 0.6, 0.7, 0.8, 0.9, and 1.0

Download (530KB)
5. Figure 4. Dashed graphs of $L^{(4)}(t)$, $M^{(4)}(t)$, and $N^{(4)}(t)$ that were achieved by using Elzaki transform decomposition method, and non-dashed graphs were achieved by residual power series method at $\alpha=0.5$, 0.6, 0.7, 0.8, 0.9, and 1.0

Download (785KB)

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».