A new application of Khalouta differential transform method and convergence analysis to solve nonlinear fractional Liénard equation
- Authors: Chetioui L.1, Khalouta A.1
-
Affiliations:
- Université Ferhat Abbas de Sétif 1
- Issue: Vol 28, No 2 (2024)
- Pages: 207-222
- Section: Differential Equations and Mathematical Physics
- URL: https://journals.rcsi.science/1991-8615/article/view/310998
- DOI: https://doi.org/10.14498/vsgtu2063
- EDN: https://elibrary.ru/ATZKZR
- ID: 310998
Cite item
Full Text
Abstract
In this study, we propose a new hybrid numerical method called the Khalouta differential transform method to solve the nonlinear fractional Liénard equation involving the Caputo fractional derivative. The convergence theorem of the proposed method is proved under suitable conditions.
The Khalouta differential transform method is a semi-analytical technique that combines two powerful methods: the Khalouta transform method and the differential transform method. The main advantage of this approach is that it provides very fast solutions without requiring linearization, perturbation, or any other assumptions. The proposed method is described and illustrated with two numerical examples. The illustrative examples show that the numerical results obtained are in very good agreement with the exact solutions. This confirms the accuracy and effectiveness of the proposed
method.
Full Text
##article.viewOnOriginalSite##About the authors
Lina Chetioui
Université Ferhat Abbas de Sétif 1
Email: lina.chetioui@univ-setif.dz
https://www.mathnet.ru/person207699
Lab. of Fundamental Mathematics and Numerical; Dept. of Mathematics; Faculty of Sciences
Algeria, 19000 SétifAli Khalouta
Université Ferhat Abbas de Sétif 1
Author for correspondence.
Email: nadjibkh@yahoo.fr
ORCID iD: 0000-0003-1370-3189
https://www.mathnet.ru/person207700
Lab. of Fundamental Mathematics and Numerical; Dept. of Mathematics; Faculty of Sciences
Algeria, 19000 SétifReferences
- Iyiola O. S, Zaman F. D. A fractional diffusion equation model for cancer tumor, AIP Advances, 2014, vol. 4, no. 10, 107121. DOI: https://doi.org/10.1063/1.4898331.
- Khan H., Tunç C., Khan R.A., et al. Approximate analytical solutions of space-fractional telegraph equations by Sumudu Adomian decomposition method, Appl. Appl. Math, 2018, vol. 3, no. 2, pp. 781–802. https://digitalcommons.pvamu.edu/aam/vol13/iss2/12.
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xv+523 pp. DOI: https://doi.org/10.1016/s0304-0208(06)x8001-5. EDN: YZECAT.
- Monje C. A., Chen Y. Q., Vinagre B. M., et al. Fractional-order Systems and Controls: Fundamentals and Applications, Advances in Industrial Control. London, Springer, 2010, xxvi+414 pp. DOI: https://doi.org/10.1007/978-1-84996-335-0.
- Podlubny I. Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, vol. 198. San Diego, CA, Academic Press, 1999, xxiv+340 pp.
- Pu Y. F. Fractional differential analysis for texture of digital image, J. Algorithms Comput. Technol., 2007, vol. 1, no. 3, pp. 357–380. DOI: https://doi.org/10.1260/174830107782424075.
- Sun H. G., Zhang Y., Baleanu D., et al. A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 64, pp. 213–231. DOI: https://doi.org/10.1016/j.cnsns.2018.04.019.
- Tarasov V. E., Tarasova V. V. Time-dependent fractional dynamics with memory in quantum and economic physics, Ann. Phys., 2017, vol. 383, pp. 579–599. DOI: https://doi.org/10.1016/j.aop.2017.05.017.
- Zhou Y., Peng L. Weak solution of the time-fractional Navier–Stokes equations and optimal control, Comput. Math. Appl., 2017, vol. 73, no. 6, pp. 1016–1027. DOI: https://doi.org/10.1016/j.camwa.2016.07.007.
- Guo P. The Adomian decomposition method for a type of fractional differential equations, J. Appl. Math. Phys., 2019, vol. 7, no. 10, pp. 2459–2466. DOI: https://doi.org/10.4236/jamp.2019.710166.
- El-Said A., Hammad D. A reliable treatment of homotopy perturbation method for the sine-Gordon equation of arbitrary (fractional) order, J. Fract. Calc. Appl., 2012, vol. 2, 1.
- Al-Zou’bi H., Zurigat H. Solving nonlinear fractional differential equations using multi-step homotopy analysis method, An. Univ. Craiova, Ser. Mat. Inf., 2014, vol. 41, no. 2, pp. 190–199.
- Khalouta A. On the solutions of nonlinear Caputo–Fabrizio fractional partial differential equations arising in applied mathematics, J. Prime Res. Math., 2022, vol. 18, no. 2, pp. 42–54.
- Khalouta A. A novel representation of numerical solution for fractional Bratu-type equation, Adv. Stud.: Euro-Tbil. Math. J., 2022, vol. 15, no. 1, pp. 93–109. DOI: https://doi.org/10.32513/asetmj/19322008207.
- Liénard A. Étude des oscillations entreténues, Revue Générale De L’Electricité, 1928, vol. 23, pp. 946–954.
- Guckenheimer J. Dynamics of the van der Pol equation, IEEE Trans. Circuits Syst., 1980, vol. 27, pp. 983–989. DOI: https://doi.org/10.1109/TCS.1980.1084738.
- Zhang Z. F., Ding T., Huang H. W., Dong Z. X. Qualitative Theory of Differential Equations. Peking, China, Science Press, 1985.
- Feng Z. On explicit exact solutions for the Liénard equation and its applications, Phys. Lett. A, 2002, vol. 293, no. 1–2, pp. 50–56. DOI: https://doi.org/10.1016/S0375-9601(01)00823-4.
- Khalouta A. A new exponential type kernel integral transform: Khalouta transform and its applications, Math. Montisnigri, 2023, vol. 57, pp. 5–23. DOI: https://doi.org/10.20948/mathmontis-2023-57-1.
- Cîrnu M., Frumosu F. Initial value problems for nonlinear differential equations solved by differential transform method, J. Inf. Syst. Oper. Manag., 2009, vol. 3, no. 2, pp. 102–107.
- Moon S., Bhosale A., Gajbhiye P., Lonare G. Solution of non-linear equations by using differential transform method, Int. J. Math. Stat. Inv., 2014, vol. 2, no. 3, pp. 78–82.
- Khalouta A. A new analytical series solution with convergence for non-linear fractional Liénard’s equations with Caputo fractional derivative, Kyungpook Math. J., 2022, vol. 62, pp. 583–593. DOI: https://doi.org/10.5666/KMJ.2022.62.3.583.
