Modeling of nonlinear torsional vibrations of a truncated conical rod
- Authors: Khudoynazarov K.K.1
-
Affiliations:
- Sharof Rashidov Samarkand State University
- Issue: Vol 27, No 4 (2023)
- Pages: 704-722
- Section: Mechanics of Solids
- URL: https://journals.rcsi.science/1991-8615/article/view/310996
- DOI: https://doi.org/10.14498/vsgtu2002
- EDN: https://elibrary.ru/ICMOQO
- ID: 310996
Cite item
Full Text
Abstract
In the present study, a nonlinear mathematical model of non-stationary torsional vibrations of a truncated conical rod made of elastic material taking into account the nonlinear relationship between stresses and strains has been developed. A nonlinear equation for torsional vibrations of the truncated conical rod has been derived with respect to the main part of the torsional displacement of the axis of symmetry of the rod. It has been demonstrated that the obtained equation for nonlinear torsional vibrations of the truncated conical elastic rod coincides with known equations obtained by other authors in particular cases. Using the derived equation, the stress-strain state of an arbitrary cross-section of the conical rod can be uniquely determined based on spatial coordinates and time. The problem of non-stationary torsional vibrations of the truncated conical rod under the action of axial and surface dynamic loads has been numerically due to the constructed model, when the wide end of the rod is rigidly fixed and the narrow end is free.
Full Text
##article.viewOnOriginalSite##About the authors
Khayrulla Kh. Khudoynazarov
Sharof Rashidov Samarkand State University
Author for correspondence.
Email: kh.khudoyn@gmail.com
ORCID iD: 0000-0001-8994-9738
Scopus Author ID: 57221229444
https://www.mathnet.ru/person120543
Dr. Techn. Sci., Professor; Head of Department; Dept. Theoretical and Applied Mechanics
Uzbekistan, 140104, Samarkand, University blv., 15References
- Kushnarenko V. M., Beridze S. P. Free longitudinal vibrations of a conical rod, Vestn. Orenburg. Gos. Univ., 2000, no. 3, pp. 83–86 (In Russian). EDN: HVZBFP.
- Bakhtiari M., Lakis A. A., Kerboua Y. Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories, Rapport technique no. EPMRT-2018-01, 2018 (In French). https://publications.polymtl.ca/3011/.
- Beridze S. P. Free torsional vibrations of a conical rod, Vestn. Orenburg. Gos. Univ., 1999, no. 3, pp. 104–107 (In Russian). EDN: HVHSMT.
- Sofiyev A. H. The non-linear vibration of FGM truncated conical shells, Compos. Struct., 2012, vol. 94, no. 7, pp. 2237–2245. DOI: https://doi.org/10.1016/j.compstruct.2012.02.005.
- Khudoynazarov Kh. Kh., Khalmuradov R. I., Yalgashev B. F. Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 69, pp. 139–154 (In Russian). EDN: FTGEQR. DOI: https://doi.org/10.17223/19988621/69/11.
- Khudoynazarov Kh. Kh. Transversal vibrations of thick and thin cylindrical shells, interacting with deformable medium, In: Shell Structures Theory and Applications. London, Taylor & Francis Group, pp. 343–347.
- Alijani F., Amabili M. Non-linear vibrations of shells: A literature review from 2003 to 2013, Int. J. Non-Linear Mech., 2014, vol. 58, pp. 233–257. DOI: https://doi.org/10.1016/j.ijnonlinmec.2013.09.012.
- Pellicano F. Vibrations of circular cylindrical shells: Theory and experiments, J. Sound Vibration, 2007, vol. 303, no. 1–2, pp. 154–170. DOI: https://doi.org/10.1016/j.jsv.2007.01.022.
- Breslavskii I. D. Stress distribution over a plate during nonlinear vibrations, Visn. Kharkiv. Natsion. Univ. im. V. N. Karazina. Ser. Mat. Mod., Inform. Tekhn., Avtomat. Sist. Upravl., 2010, no. 926, pp. 75–84 (In Russian). http://nbuv.gov.ua/UJRN/VKhIMAM_2010_926_15_11.
- Chen C. Nonlinear dynamic of a rotating truncated conical shell, In: L. Dai, R. Jazar (Eds.) Nonlinear Approaches in Engineering Applications. New York, NY, Springer, 2012, pp. 349–391. DOI: https://doi.org/10.1007/978-1-4614-1469-8_12.
- Akhmedov A. B., Sheshenin S. V. Nonlinear equations of motion for orthotropic plates, Moscow University Mechanics Bulletin, 2012, vol. 67, no. 3, pp. 66–68. EDN: RGCBPX. DOI: https://doi.org/10.3103/S002713301203003X.
- Bakushev S. V. Resolving equations of planar deformation in cylindrical coordinates for physically nonlinear continuum, Structural Mechanics of Engineering Constructions and Buildings, 2018, vol. 14, no. 1, pp. 38—45 (In Russian). EDN: YOJIUV. DOI: https://doi.org/10.22363/1815-5235-2018-14-1-38-45.
- Khudoynazarov Kh., Abdurazakov J., Kholikov D. Nonlinear torsional vibrations of a circular cylindrical elastic shell, AIP Conf. Proc., 2022, vol. 2637, 020003. DOI: https://doi.org/10.1063/5.0118844.
- Khudoynazarov Kh., Kholikov D., Abdurazakov J. Torsional vibrations of a conical elastic shell, AIP Conf. Proc., 2022, vol. 2637, 030024. DOI: https://doi.org/10.1063/5.0118846.
- Khudoynazarov Kh., Khudoyberdiyev Z. B. Unsteady vibrations of a three-layer plate with an asymmetric structure, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 614, 012061. DOI: https://doi.org/10.1088/1755-1315/614/1/012061.
- Khudoynazarov Kh., Yaxshiboyev Sh. R. The mathematical model of transverse vibrations of the three-layer plate, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 614, 012062. DOI: https://doi.org/10.1088/1755-1315/614/1/012062.
- Khudoynazarov K., Yalgashev B. Longitudinal vibrations of a cylindrical shell filled with a viscous compressible liquid, E3S Web Conf., 2021, vol. 264, 02017. DOI: https://doi.org/10.1051/e3sconf/202126402017.
- Filippov I. G., Kudajnazarov K. Boundary value problems of longitudinal oscillations of the circular cylindrical shells, Industrial Construction, 1998, vol. 28, no. 12, pp. 34–40. EDN: RQIBJX.
- von Kauderer H. Nichtlineare Mechanik. Berlin, Springer-Verlag, 684 pp. (In German)
- Filippov I. G., Filippov S. I. Kolebatel’nye i volnovye protsessy v sploshnykh szhimaemykh sredakh [Oscillatory andWave Processes in Continuous Compressible Media]. Moscow, 2007, 429 pp. (In Russian). EDN: QJRVVZ.
- Khudoynazarov Kh. Kh. Nestatsionarnoe vzaimodeistvie tsilindricheskikh obolochek i sterzhnei s deformiruemoi sredoi [Nonstationary Interaction of Cylindrical Shells and Rods with a Deformable Medium]. Tashkent, 2003, 326 pp. (In Russian)
- Tsurpal I. A. Raschet elementov konstruktsii iz nelineino-uprugikh materialov [Calculation of Structural Elements Made from Nonlinearly Elastic Materials]. Kiev, Tekhnika, 1976, 176 pp. (In Russian)
- Kudin A. V., Tamurov Yu. N. Application of the small parameter method in modeling the bending of symmetrical three-layer plates with nonlinear elastic filler, Visn. Skhidnoukr. Natsion. Univ. im. V. Dalya, 2011, no. 11, pp. 32–40 (In Russian).
Supplementary files
