Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. Mathematical relations
- Authors: Sevodina N.V.1, Iurlova N.A.1, Oshmarin D.A.1
-
Affiliations:
- Institute of Continuous Media Mechanics UB RAS
- Issue: Vol 27, No 4 (2023)
- Pages: 679-703
- Section: Mechanics of Solids
- URL: https://journals.rcsi.science/1991-8615/article/view/310994
- DOI: https://doi.org/10.14498/vsgtu2025
- EDN: https://elibrary.ru/GHEHRB
- ID: 310994
Cite item
Full Text
Abstract
This paper presents a method for determining the magnitude of the electric potential generated on the electrodated surface of a piezoelectric element, which is part of a piece-wise homogeneous electroviscoelastic structure, necessary for the formation of a control action when actively controlling its dynamic behavior in the mode of forced steady-state vibrations in order to minimize the amplitude of vibrations at the selected resonant frequency. By mathematical transformations of the equations describing the intrinsic and forced vibrations of such electroviscoelastic bodies, the relations expressing the relationship between the values of the displacement of the nodes and the electric potential on the electroded surface of the piezoelectric element are derived. These formulas allow us to determine the magnitude of the potential that must be applied to the piezoelectric element in order to best dampen a given vibration mode of the structure. As a result of numerical experiments obtained by using the ANSYS finite element analysis software package, and the usability of the results of solving the problem of natural vibrations to find the optimal value of the potential characterizing the control electrical action aimed at damping the specified modes in the mode of forced steadystate vibrations is confirmed. The effectiveness of the obtained analytical dependencies is demonstrated by the example of a cantilevered viscoelastic plate with a piezoelectric element located on its surface. The proposed approach makes it possible to significantly reduce time and resource costs of the mathematical modeling of active control of forced steady-state oscillations of electroviscoelastic bodies, to determine the requirements for the hardware implementation of actuators and controllers of the control unit of
such smart-systems.
Full Text
##article.viewOnOriginalSite##About the authors
Natalya V. Sevodina
Institute of Continuous Media Mechanics UB RAS
Email: natsev@icmm.ru
ORCID iD: 0000-0001-9374-7135
SPIN-code: 1605-0002
Scopus Author ID: 15133373300
https://www.mathnet.ru/person73434
Cand. Techn. Sci.; Researcher; Dept. of Complex Problems of Deformable Solids Mechanics
Russian Federation, 614013, Perm, Academician Korolev str., 1Nataliya A. Iurlova
Institute of Continuous Media Mechanics UB RAS
Author for correspondence.
Email: yurlova@icmm.ru
ORCID iD: 0000-0003-3497-0358
SPIN-code: 7391-6762
Scopus Author ID: 57191952953
ResearcherId: N-5129-2015
https://www.mathnet.ru/person122838
Cand. Phys.& Math. Sci., Associate Professor; Senior Researcher
Russian Federation, 614013, Perm, Academician Korolev str., 1Dmitrii A. Oshmarin
Institute of Continuous Media Mechanics UB RAS
Email: oshmarin@icmm.ru
ORCID iD: 0000-0002-9898-4823
SPIN-code: 6084-5189
Scopus Author ID: 57041319000
ResearcherId: J-7906-2018
https://www.mathnet.ru/person122272
Cand. Techn. Sci.; Researcher; Dept. of Complex Problems of Deformable Solids Mechanics
Russian Federation, 614013, Perm, Academician Korolev str., 1References
- Park G., Sausse M., Inman D. J., Main J. A. Vibration testing and finite element analysis of inflatable structures, AIAA J., 2003, vol. 41, no. 8, pp. 1556–1566. DOI: https://doi.org/10.2514/2.2107.
- Nye T. W., Manning R. A., Qassim K. Performance of active vibration control technology: the ACTEX flight experiments, Smart Mater. Struct., 1999, vol. 8, no. 6, pp. 767–780. DOI: https://doi.org/10.1088/0964-1726/8/6/306.
- Denoyer K. K., Erwin R. S., Ninneman R. R. Advanced smart structures flight experiments for precision spacecraft, Acta Astronautica, 2000, vol. 47, no. 2–9, pp. 389–397. DOI: https://doi.org/10.1016/S0094-5765(00)00080-1.
- Makhtoumi M. Active vibration control of launch vehicle on satellite using piezoelectric stack actuator, J. Space Technol., 2018, vol. 8, no. 1, pp. 1–11, arXiv: 1903.07396 [physics.spaceph].
- Kajiwara I., Uchiyama T., Arisaka T. Vibration control of hard disk drive with smart structure technology for improving servo performance, In: Motion and Vibration Control. Dordrecht, Springer, 2009, pp. 165–176. DOI: https://doi.org/10.1007/978-1-4020-9438-5_17.
- Tani J., Takagi T., Qiu J. Intelligent material systems: Application of functional materials, Appl. Mech. Rev., 1998, vol. 51, no. 8, pp. 505–521. DOI: https://doi.org/10.1115/1.3099019.
- Sobczyk M., Wiesenhütter S., Noennig J. R., Wallmersperger T. Smart materials in architecture for actuator and sensor applications: A review, J. Intelligent Mater. Syst. Struct., 2022, vol. 33, no. 3, pp. 379–399. DOI: https://doi.org/10.1177/1045389X211027954.
- Chen C., Sharafi A., Sun J. A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation, Applied Energy, 2020, vol. 269, 115073. DOI: https://doi.org/10.1016/j.apenergy.2020.115073.
- Yang K., Zhu J., Wu M., Zhang W. Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control, Comp. Meth. Appl. Mech. Eng., 2018, vol. 334, pp. 440–469. DOI: https://doi.org/10.1016/j.cma.2018.01.021.
- Ayres J. W., Rogers C. A., Chaudhry Z. A. Qualitative health monitoring of a steel bridge joint via piezoelectric actuator/sensor patches, Proc SPIE, 2019, vol. 2719, Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways (22 April 1996), pp. 123–131. DOI: https://doi.org/10.1117/12.238831.
- Marakakis K., Tairidis G. K., Koutsianitis P., Stavroulakis G. E. Shunt piezoelectric systems for noise and vibration control: A Review, Front. Built Environ., 2019, vol. 5, 64. DOI: https://doi.org/10.3389/fbuil.2019.00064.
- Moheimani S. O. R., Vautier B. J. G. Resonant control of structural vibration using chargedriven piezoelectric actuators, IEEE Trans. Contr. Sys. Technol., 2005, Т. 13, №6, С. 1021–1035. DOI: https://doi.org/10.1109/TCST.2005.857407.
- Alkhatib R., Golnaraghi M. F. Active structural vibration control: A Review, The Shock and Vibration Digest, 2003, vol. 35, no. 5, pp. 367–383. DOI: https://doi.org/10.1177/05831024030355002.
- Fisco N. R, Adeli H. Smart structures: Part I — Active and semi-active control, Scientia Iranica, 2011, vol. 18, no. 3, pp. 275–284. DOI: https://doi.org/10.1016/j.scient.2011.05.034.
- Fuller C. R., Elliot S. J., Nelson P. A. Active Control of Vibration. London, Academic Press, 1997, xii+332 pp. DOI: https://doi.org/10.1016/B978-0-12-269440-0.X5000-6.
- Preumont A. Vibration Control of Active Structures: An Introduction. Dordrecht, Springer, 2011, xx+436 pp. DOI: https://doi.org/10.1007/978-94-007-2033-6.
- Aktas K. G., Esen I. State-space modeling and active vibration control of smart flexible cantilever beam with the use of finite element method, Eng. Technol. Appl. Sci. Res., 2020, vol. 10, no. 6, pp. 6549–6556. DOI: https://doi.org/10.48084/etasr.3949.
- Preumont A. Active damping, vibration isolation, and shape control of space structures: A tutorial, Actuators, 2016, vol. 12, no. 3, pp. 122–147. DOI: https://doi.org/10.3390/act12030122.
- Ding B., Li Y., Xiao X., Tang Y. Optimized PID tracking control for piezoelectric actuators based on the Bouc–Wen model, In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, China, pp. 1576–1581. DOI: https://doi.org/10.1109/ROBIO.2016.7866552.
- Sareban M. Evaluation of Three Common Algorithms for Structure Active Control, Eng. Technol. Appl. Sci. Res., 2017, vol. 7, no. 3, pp. 1638–1646. DOI: https://doi.org/10.48084/etasr.1150.
- Płaczek M. The study of a control signal’s phase shift influence on the efficiency of a system for active vibration damping based on MFC piezoelectric transducers, MATEC Web Conf., 2020, vol. 318, 01005. DOI: https://doi.org/10.1051/matecconf/202031801005.
- Fisco N. R, Adeli H. Smart structures: Part II — Hybrid control systems and control strategies, Scientia Iranica, 2011, vol. 18, no. 3, pp. 285–295. DOI: https://doi.org/10.1016/j.scient.2011.05.035.
- Kumar R., Singh S. P., Chandrawat H. N. MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach, J. Sound Vibration, 2023, vol. 307, no. 3-5, pp. 639–661. DOI: https://doi.org/10.1016/j.jsv.2007.06.028.
- Matveenko V. P., Iurlova N. A., Oshmarin D. A., Sevodina N. V. Analysis of dissipative properties of electro-viscoelastic bodies with shunting circuits on the basis of numerical modelling of natural vibrations, Acta Mech., 2023, vol. 234, no. 1, pp. 261–276. EDN: GMVYZG. DOI: https://doi.org/10.1007/s00707-022-03193-8.
- Matveenko V. P., Oshmarin D. A., Sevodina N. V., Iurlova N. A. Problem on natural vibrations of electroviscoelastic bodies with external electric circuits and finite element relations for its implementation, Computational Continuum Mechanics, 2016, vol. 9, no. 4, pp. 476–485 (In Russian). EDN: XDDTUB. DOI: https://doi.org/10.7242/1999-6691/2016.9.4.40.
- Kligman E. P., Matveenko V. P. Vibration problem of viscoelastic solids as applied to optimization of dissipative properties of constructions, J. Vibration Control, 1997, vol. 3, no. 1, pp. 87–102. EDN: LEKWMP. DOI: https://doi.org/10.1177/107754639700300107.
- Kligman E. P., Matveenko V. P., Sevodina N. V. Determination of natural oscillations of piece-wise homogeneous viscoelastic bodies using the ANSYS package, Computational Continuum Mechanics, 2010, vol. 3, no. 2, pp. 46–54 (In Russian). EDN: NTJWSX. DOI: https://doi.org/10.7242/1999-6691/2010.3.2.16.
- ANSYS, Release 2022 R1 Documentation. Canonsburg, 2022.
- Iurlova N. A., Oshmarin D. A., Sevodina N. V. A numerical analysis of forced steady-state vibrations of an electro-viscoelastic system in case of a joint impact of electrical and mechanical loads, PNRPU Mechanics Bulletin, 2022, no. 4, pp. 67–79 (In Russian). EDN: VSTMA. DOI: https://doi.org/10.15593/perm.mech/2022.4.07.
Supplementary files
