Dynamics of a thermal entanglement in the not-resonant three-qubit Tavis-Cummings model with Kerr nonlinearity
- Authors: Bagrov A.R.1, Bashkirov E.K.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 28, No 1 (2024)
- Pages: 7-28
- Section: Differential Equations and Mathematical Physics
- URL: https://journals.rcsi.science/1991-8615/article/view/310993
- DOI: https://doi.org/10.14498/vsgtu2040
- EDN: https://elibrary.ru/ZPKXMD
- ID: 310993
Cite item
Full Text
Abstract
In this article, we consider the dynamics of three identical qubits interacting not-resonantly with a thermal field of an ideal resonator with a Kerr medium. We have found the solutions of the Liouville quantum equation for the total density matrix of a system under consideration for the initial separable, biseparable, and genuine entangled states of the qubits and the thermal initial state of the resonator field. By averaging the total density matrix over the variables of the resonator field and the variables of one of the qubits, we found the reduced density matrix of the pair of remaining qubits. Two-qubit density matrices were used to calculate the qubit-qubit negativity. The results showed that detuning and Kerr nonlinearity can greatly enhance the amout of entanglement for initial separable state of a pair of qubits. It is also shown that detuning and a Kerr medium can inhibit the sudden death of entanglement.
Full Text
##article.viewOnOriginalSite##About the authors
Alexander R. Bagrov
Samara National Research University
Email: alexander.bagrov00@mail.ru
ORCID iD: 0000-0002-1098-0300
https://www.mathnet.ru/person194194
Masters' Student; Dept. of General and Theoretical Physics
Russian Federation, 443086, Samara, Moskovskoye shosse, 34Eugene K. Bashkirov
Samara National Research University
Author for correspondence.
Email: bashkirov.ek@ssau.ru
ORCID iD: 0000-0001-8682-4956
https://www.mathnet.ru/person23894
Dr. Phys. & Math. Sci., Professor; Professor; Dept. of General and Theoretical Physics
Russian Federation, 443086, Samara, Moskovskoye shosse, 34References
- Buluta I., Ashhab S., Nori F. Natural and artificial atoms for quantum computation // Rep. Prog. Phys., 2011. vol. 74, no. 10, 104401, arXiv: 1002.1871 [quant-ph]. DOI: https://doi.org/10.1088/0034-4885/74/10/104401.
- Xiang Z.-L., Ashhab S., You J. Y., Nori F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems // Rev. Mod. Phys., 2013. vol. 85, no. 2. pp. 623–653, arXiv: 1204.2137 [quant-ph]. DOI: https://doi.org/10.1103/RevModPhys.85.623.
- Georgescu I. M., Ashhab S., Nori F. Quantum simulation // Rev. Mod. Phys., 2014. vol. 88, no. 1. pp. 153–185, arXiv: 1308.6253 [quant-ph]. DOI: https://doi.org/10.1103/RevModPhys.86.153.
- Gu X., Kockum A.F., Miranowicz A., et al. Microwave photonics with superconducting quantum circuits // Phys. Reports, 2017. vol. 718–719. pp. 1–102, arXiv: 1707.02046 [quantph]. DOI: https://doi.org/10.1016/j.physrep.2017.10.002.
- Wendin G. Quantum information processing with super-conducting circuits: a review // Rep. Prog. Phys., 2017. vol. 80, no. 10, 106001, arXiv: 1610.02208 [quant-ph]. DOI: https://doi.org/10.1088/1361-6633/aa7e1a.
- Kjaergaard M., Schwartz M. E., Braumüller J., et al. Superconducting qubits: Current state of play // Annu. Rev. Condens. Matter Phys., 2020. vol. 11. pp. 369–395, arXiv: 1905.13641 [quant-ph]. DOI: https://doi.org/10.1146/annurev-conmatphys-031119-050605.
- Huang H.-L., Wu D., Fan D., Zhu X. Superconducting quantum computing: a review// Sci. China Inf. Sci., 2020. vol. 63, 180501, arXiv: 2006.10433 [quant-ph]. DOI: https://doi.org/10.1007/S11432-020-2881-9.
- Chen J. Review on quantum communication and quantum computation // J. Phys.: Conf. Ser., 2021. vol. 1865, 022008. DOI: https://doi.org/10.1088/1742-6596/1865/2/022008.
- Chernega V. N., Man’ko O. V., Man’ko V. I. Entangled qubit states and linear entropy in the probability representation of quantum mechanics // Entropy, 2022. vol. 24, no. 4, 527. DOI: https://doi.org/10.3390/e24040527.
- Li G.-Q., Pan X.-Y. Quantum information processing with nitrogen–vacancy centers in diamond // Chinese Phys. B, 2018. vol. 27, no. 2, 020304. DOI: https://doi.org/10.1088/1674-1056/27/2/020304.
- Shore B. W., Knight P. L. The Jaynes–Cummings model // J. Mod. Opt., 1992. vol. 40, no. 7. pp. 1195–1238. DOI: https://doi.org/10.1080/09500349314551321.
- Walther H, Varcoe B. T. H., Englert B.-G., Becker T. Cavity quantum electrodynamics // Rep. Prog. Phys, 2011. vol. 69, no. 5. pp. 1325–1382. DOI: https://doi.org/10.1088/0034-4885/69/5/R02.
- Popov E. N., Reshetov V. A. Controllable source of single photons based on a micromaser with an atomic beam without inversion // JETP Lett., 2020. vol. 111, no. 12. pp. 727–733. DOI: https://doi.org/10.1134/S0021364020120127.
- Reshetov V. A. Jaynes–Cummings model with degenerate atomic levels and two polarization modes of the quantized field // Laser Phys. Lett., 2019. vol. 16, no. 4. pp. 046001. DOI: https://doi.org/10.1088/1612-202X/ab0a5c.
- Wootters W. K. Entanglement of formation of an arbitrary state of two qubits // Phys. Rev. Lett., 1998. vol. 80, no. 10. pp. 2245–2248, arXiv: quant-ph/9709029. DOI: https://doi.org/10.1103/PhysRevLett.80.2245.
- Peres A. Separability criterion for density matrices // Phys. Rev. Lett., 1996. vol. 77, no. 8. pp. 1413–1415, arXiv: quant-ph/9604005. DOI: https://doi.org/10.1103/PhysRevLett.77.1413.
- Horodecki R., Horodecki M., Horodecki P. Separability of mixed states: Necessary and sufficient conditions // Phys. Lett. A, 1996. vol. 223, no. 1–2. pp. 1–8, arXiv: quant-ph/9605038. DOI: https://doi.org/10.1016/S0375-9601(96)00706-2.
- Zha X., Yuan C., Zhang Y. Generalized criterion for a maximally multi-qubit entangled state // Laser Phys. Lett., 2013. vol. 10, no. 4, 045201, arXiv: 1204.6340 [quant-ph]. DOI: https://doi.org/10.1088/1612-2011/10/4/045201.
- Gühne O., Seevinck M. Separability criteria for genuine multiparticle entanglement // New J. Phys., 2010. vol. 12, 053002, arXiv: 0905.1349 [quant-ph]. DOI: https://doi.org/10.1088/1367-2630/12/5/053002.
- Pereira L., Zambrano L., Delgado A. Scalable estimation of pure multi-qubit states // npj Quantum Inf., 2022. vol. 8, 57, arXiv: 2107.05691 [quant-ph]. DOI: https://doi.org/10.1038/s41534-022-00565-9.
- Zhahir A. A., Mohd S. M., Shuhud M. I. M., et al. Entanglement quantification and classification: A systematic liteature review // Int. J. Adv. Comp. Sci. Appl., 2022. vol. 13, no. 5. pp. 218–225. DOI: https://doi.org/10.14569/IJACSA.2022.0130527.
- Dür W., Cirac J. I. Classification of multiqubit mixed states: Separability and distillability properties // Phys. Rev. A, 2000. vol. 61, no. 4, 042314, arXiv: quant-ph/9911044. DOI: https://doi.org/10.1103/PhysRevA.61.042314.
- Dür W., Cirac J. I., Vidal G. Three qubits can be entangled in two inequivalent ways // Phys. Rev. A, 2000. vol. 62, no. 6, 062314, arXiv: quant-ph/0005115. DOI: https://doi.org/10.1103/PhysRevA.62.062314.
- Acín A., Bruß D., Lewenstein M., Sanpera A. Classification of mixed three-qubit states // Phys. Rev. Lett., 2000. vol. 87, no. 4, 040401, arXiv: quant-ph/0103025. DOI: https://doi.org/10.1103/PhysRevLett.87.040401.
- Sabín C., García-Alcaine G., A classification of entanglement in three-qubit systems // Eur. Phys. J. D, 2008. vol. 48. pp. 435–442, arXiv: 0707.1780 [quant-ph]. DOI: https://doi.org/10.1140/epjd/e2008-00112-5.
- Mohd S. Idrus B., Zainuddin H., Mukhtar M. Entanglement classification for a three-qubit system using special unitary groups, SU(2) and SU(4) // Int. J. Adv. Comp. Sci. Appl., 2019. vol. 10, no. 7. pp. 374–379. DOI: https://doi.org/10.14569/IJACSA.2019.0100751.
- Akbari-Kourbolagh Y. Entanglement criteria for the three-qubit states // Int. J. Quantum Inf., 2017. vol. 15, no. 7, 1750049. DOI: https://doi.org/10.1142/S0219749917500496.
- Kendon V., Nemoto K., Munro W. Typical entanglement in multiple-qubit systems // J. Mod. Opt., 2001. vol. 49, no. 10. pp. 1709–1716, arXiv: quant-ph/0106023. DOI: https://doi.org/10.1080/09500340110120914.
- Kim M. S., Lee J., Ahn D., Knight P. L. Entanglement induced by a single-mode heat environment // Phys. Rev. A, 2002. vol. 65, no. 4, 040101(R), arXiv: quant-ph/0109052. DOI: https://doi.org/10.1103/PhysRevA.65.040101.
- Zhang B. Entanglement between two qubits interacting with a slightly detuned thermal field // Optics Commun., 2010. vol. 283, no. 23. pp. 4676–4679. DOI: https://doi.org/10.1016/j.optcom.2010.06.094.
- Bashkirov E. K. Thermal entanglement between a Jaynes–Cummings atom and an isolated atom // Int. J. Theor. Phys., 2018. vol. 57, no. 12. pp. 3761–3771. DOI: https://doi.org/10.1007/s10773-018-3888-y.
- Jin-Fang C., Hui-Ping L. Entanglement in three-atom Tavis–Cummings model induced by a thermal field // Commun. Ther. Phys., 2005. vol. 43, no. 3, 427. DOI: https://doi.org/10.1088/0253-6102/43/3/010.
- Yu T., Eberly J. H. Sudden death of entanglement // Science, 2009. vol. 323, no. 5914. pp. 598–601, arXiv: 0910.1396 [quant-ph]. DOI: https://doi.org/10.1126/science.1167343.
- Wang F., Hou P.-Y., Huang Y. Y., et al. Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath // Phys. Rev. B, 2018. vol. 98, no. 6, 064306, arXiv: 1801.02729 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevB.98.064306.
- Sun G., Zhou Z., Mao B., Wen X., et al. Entanglement dynamics of a superonducting phase qubit coupled to a two-level system // Phys. Rev. B, 2012. vol. 86, no. 1, 064502, arXiv: 1111.3016 [cond-mat.mes-hall]. DOI: https://doi.org/10.1103/PhysRevB.86.064502.
- Salles A., de Melo F., Almeida M. P., et al. Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment // Phys. Rev. A, 2008. vol. 78, no. 2. pp. 022322, arXiv: 0804.4556 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevA.78.022322.
- Bashkirov E. K. Entanglement in Tavis-Cummings model with Kerr nonlinearity induced by a thermal noise // Proc. SPIE, 2021. vol. 11846 (Saratov Fall Meeting 2020: Laser Physics, Photonic Technologies, and Molecular Modeling, 4 May 2021), 11846OW. DOI: https://doi.org/10.1117/12.2588673.
- Bagrov A.R., Bashkirov E.K. Dynamics of the three-qubits Tavis–Cummings model, Vestnik of Samara University. Natural Science Series, 2022, vol. 28, no. 1–2, pp. 95–105 (In Russian). EDN: RJIHGM. DOI: https://doi.org/10.18287/2541-7525-2022-28-1-2-95-105.
- Kirchmair G., Vlastakis B., Leghtas Z., et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect // Nature, 2013. vol. 495. pp. 205–209, arXiv: 1211.2228 [quant-ph]. DOI: https://doi.org/10.1038/nature11902.
Supplementary files
