Thermomechanical states of gyrotropic micropolar solids
- Authors: Murashkin E.V.1, Radayev Y.N.1
-
Affiliations:
- Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
- Issue: Vol 27, No 4 (2023)
- Pages: 659-678
- Section: Mechanics of Solids
- URL: https://journals.rcsi.science/1991-8615/article/view/310992
- ID: 310992
Cite item
Full Text
Abstract
The paper is devoted to problems of modeling heat conduction processes in micropolar elastic solids, all thermomechanical states of which may be sensible to mirror reflections of three-dimensional space. A new variant of the heat conduction theory is developed in terms of the heat fluxes treated as pseudovectors of algebraic weight \(+1\) making their similar to the pseudovector of spinor displacements known from previous discussions. Constitutive pseudoinvariants (at least some of them) have odd negative weights (for example, thermal conductivity coefficient and specific heat). Having choosing elements of volume and area as natural known from the classical field theory formulations and considered as pseudoinvariants of weight \(-1\), the variant of theory is proposed. An absolute contravariant vector represents translational displacements and a contravariant pseudovector of weight \(+1\) does spinor displacements. As a result, heat flux, force stress tensor, mass density and specific heat can be treated as pseudotensor quantities of odd weights. The Helmholtz free energy per unit natural volume element is used as the thermodynamic potential with the functional arguments: temperature, symmetrical parts and accompanying vectors of the linear asymmetric strain tensor and wryness pseudotensor. The principle of absolute invariance of absolute thermodynamic temperature is proposed and discussed. A nonlinear heat conduction equation is obtained and linearized.
Full Text
##article.viewOnOriginalSite##About the authors
Evgenii V. Murashkin
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Author for correspondence.
Email: evmurashkin@gmail.com
ORCID iD: 0000-0002-3267-4742
https://www.mathnet.ru/person53045
Cand. Phys. & Math. Sci., PhD, MD; Senior Researcher; Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1Yuri N. Radayev
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Email: y.radayev@gmail.com
ORCID iD: 0000-0002-0866-2151
https://www.mathnet.ru/person39479
D.Sc. (Phys. & Math. Sci.), Ph.D., M.Sc., Professor; Leading Researcher; Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1References
- Lakes R. Elastic and viscoelastic behavior of chiral materials, Int. J. Mech. Sci., 2001, vol. 43, no. 7, pp. 1579–1589. DOI: https://doi.org/10.1016/S0020-7403(00)00100-4.
- Mackay T. G., Lakhtakia A. Negatively refracting chiral metamaterials: a review, SPIE Reviews, 2010, vol. 1, no. 1, 018003. DOI: https://doi.org/10.1117/6.0000003.
- Tomar S. K., Khurana A. Wave propagation in thermo-chiral elastic medium, Appl. Math. Model., 2013, vol. 37, no. 22, pp. 9409–9418. DOI: https://doi.org/10.1016/j.apm.2013.04.029.
- Radayev Yu. N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 3, pp. 504–517 (In Russian). EDN: YOYJQD. DOI: https://doi.org/10.14498/vsgtu1635.
- Neuber H. Über Probleme der Spannungskonzentration im Cosserat–Körper, Acta Mechanica, 1966, vol. 2, pp. 48–69. DOI: https://doi.org/10.1007/BF01176729.
- Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua, In: Applied Mechanics; eds. H. Görtler. Berlin, Heidelberg, Springer, 1966, pp. 153–158. DOI: https://doi.org/10.1007/978-3-662-29364-5_16.
- Radayev Yu. N., Murashkin E. V. Pseudotensor formulation of the mechanics of hemitropic micropolar media, Problems of Strength and Plasticity, 2020, vol. 82, no. 4, pp. 399–412 (In Russian). EDN: TODIFV. DOI: https://doi.org/10.32326/1814-9146-2020-82-4-399-412.
- Murashkin E. V., Radayev Yu. N. On a micropolar theory of growing solids, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 3, pp. 424–444. EDN: TYGBER. DOI: https://doi.org/10.14498/vsgtu1792.
- Murashkin E. V., Radayev Yu. N. On the theory of linear hemitropic micropolar media, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2020, no. 4(46), pp. 16–24 (In Russian). EDN: IZKTBQ. DOI: https://doi.org/10.37972/chgpu.2020.89.81.031.
- Murashkin E. V., Radayev Yu. N. Coupled thermoelasticity of hemitropic media. Pseudotensor formulation, Mech. Solids, 2023, vol. 58, no. 3, pp. 802–813. DOI: https://doi.org/10.3103/s0025654423700127.
- Murashkin E. V., Radayev Yu. N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity, Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. EDN: PINYDI. DOI: https://doi.org/10.1134/S1995080223060392.
- Truesdell C., Toupin R. The classical field theories, In: Encyclopedia of Physics, vol. III/1, Principles of Classical Mechanics and Field Theory; eds. S. Flügge. Berlin, Göttingen, Heidelberg, Springer, 1960, pp. 226–902. DOI: https://doi.org/10.1007/978-3-642-45943-6_2.
- Schouten J. A. Tensor Analysis for Physicist. Oxford, Clarendon Press, 1951, 434 pp.
- Sokolnikoff I. S. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley & Sons, 1964, 361 pp.
- Synge J. L., Schild A. Tensor Calculus. New York, Dover Publ., 1978, xi+324 pp.
- Das A. J. Tensors: The Mathematics of Relativity Theory and Continuum Mechanics. Berlin, Springer Science & Business Media, 2007, xii+290 pp. DOI: https://doi.org/10.1007/978-0-387-69469-6.
- Gurevich G. B. Foundations of the Theory of Algebraic Invariants. Groningen, Noordhoff, 1964, 429 pp.
- Veblen O., Thomas T. Y. Extensions of relative tensors, Trans. Amer. Math. Soc., 1924, vol. 26, no. 3, pp. 373–377. DOI: https://doi.org/10.1090/S0002-9947-1924-1501284-6.
- Veblen O. Invariants of Quadratic Differential Forms. Cambridge, Cambridge Univ. Press, 1927, viii+102 pp.
- Cosserat E., Cosserat F. Théorie des Corps déformables. Paris, A. Herman et Fils, 1909, vi+226 pp.
- Nowacki W. Theory of Micropolar Elasticity. Wien, Springer, 1972, 285 pp. DOI: https://doi.org/10.1007/978-3-7091-2720-9.
- Nowacki W. Theory of Asymmetric Elasticity. Oxford, Pergamon Press, 1986, viii+383 pp.
- Dyszlewicz J. Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics. Berlin, Heidelberg, Springer, 2004, xv+345 pp. DOI: https://doi.org/10.1007/978-3-540-45286-7.
- Besdo D. Ein Beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums, Acta Mechanica, 1974, vol. 20, no. 1, pp. 105–131. DOI: https://doi.org/10.1007/BF01374965.
- Murashkin E. V., Radayev Yu. N. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 2023, vol. 165, no. 4 (to appear) (In Russian).
- Murashkin E. V., Radayev Yu. N. Schouten’s force stress tensor and affinor densities of positive weight, Problems of Strength and Plasticity, 2022, vol. 84, no. 4, pp. 545–558 (In Russian). EDN: KPMGGN. DOI: https://doi.org/10.32326/1814-9146-2022-84-4-545-558.
- Murashkin E. V., Radayev Yu. N. The Schouten force stresses in continuum mechanics formulations, Mech. Solids, 2023, vol. 58, no. 1, pp. 153–160. DOI: https://doi.org/10.3103/s0025654422700029.
- Kovalev V. A., Radayev Yu. N. Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Elements of Field Theory: Variational Symmetries and Geometric Invariants]. Moscow, Fizmatlit, 2009, 160 pp (In Russian). EDN: MWDGDN.
- Kovalev V. A., Radayev Yu. N. Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics]. Saratov, Saratov Univ., 2010, 328 pp (In Russian). EDN: QJXSPX.
- Murashkin E. V., Radayev Yu. N. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 4, pp. 776–786 (In Russian). EDN: ZKIAAJ. DOI: https://doi.org/10.14498/vsgtu1883.
- Murashkin E. V., Radayev Yu. N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space, Mech. Solids, 2022, vol. 57, no. 2, pp. 205–213. EDN: SNKUNC. DOI: https://doi.org/10.3103/s0025654422020108.
- Finikov S. P. Metod vneshnikh form Kartana v differentsial’noi geometrii [Cartan’s Method of External Forms in Differential Geometry]. Leningrad, Moscow, GITTL, 1948, 432 pp. (In Russian)
- Cartan H. Differentsial’noe ischislenie. Differentsial’nye formy [Differential Calculus. Differential Forms]. Moscow, Mir, 1971, 392 pp. (In Russian)
- Efimov N. V. Vvedenie v teoriiu vneshnikh form [Introduction to the Theory of External Forms]. Moscow, Nauka, 1977, 88 pp. (In Russian)
- Pars L. A. Analiticheskaia dinamika [Analytical Dynamics]. Moscow, Nauka, 1971, 636 pp. (In Russian)
- Radayev Yu. N. Tensors with constant components in the constitutive equations of hemitropic micropolar solids, Mech. Solids, 2023, vol. 58, no. 5, pp. 1517–1527. DOI: https://doi.org/10.3103/S0025654423700206.
- Murashkin E. V., Radayev Yu. N. Algebraic algorithm for systematically reducing onepoint pseudotensors to absolute tensors, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1(51), pp. 17–26 (In Russian). EDN: ZJWFGT. DOI: https://doi.org/10.37972/chgpu.2022.51.1.002.
- Rozenfel’d B. A. Mnogomernye prostranstva [Multidimensional Spaces]. Moscow, Nauka, 1966, 648 pp. (In Russian)
- Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclidean spaces. Elements of the theory, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), pp. 106–115 (In Russian). EDN: FQVGRK. DOI: https://doi.org/10.37972/chgpu.2022.52.2.012.
- Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), pp. 118–127 (In Russian). EDN: ESTJSA. DOI: https://doi.org/10.37972/chgpu.2022.52.2.013.
- Poincaré H. Sur les residus des integrales doubles, Acta math, 1887, vol. 6, pp. 321–380.
- Poincaré H. Analysis situs, J. Éc. Politech., 1895, vol. 2, no. 1, pp. 1–123 (In French).
- Murashkin E. V. On the formulation of boundary conditions in problems of synthesis of woven 3D materials, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 1(47), pp. 114–121 (In Russian). EDN: CSFKRW. DOI: https://doi.org/10.37972/chgpu.2021.1.47.010.
- Jeffreys H. Cartesian Tensors. Cambridge, Cambridge Univ. Press, 1931, 105 pp.
Supplementary files
