The study of the stress-strain state of an elastically supported compressed strip

Cover Page

Cite item

Full Text

Abstract

An analysis has been conducted on the continuous dependence of the function describing the behavior of the real structure on the characteristics of initial imperfections. A condition has been obtained, imposed on the parameter of external influence and the stiffness coefficient of the foundation, when that is violated, the shape of the cross-section of the strip will no longer be close to a rectangle, i.e. the strip loses shape stability. During the study, the parameters of external influences remained independent.
The first version of the article was published in Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki [Current Problems of Applied Mathematics, Computational Science and Mechanics]. Voronezh, 2022. Pp. 1265–1269. (In Russian)

About the authors

Nadezhda V. Minaeva

Voronezh State University

Author for correspondence.
Email: nminaeva@yandex.ru
ORCID iD: 0000-0002-9366-5575

Dr. Phys. & Math. Sci., Professor, Dept. of Mechanics and Computer Simulation

Russian Federation, 364018, Voronezh, Universitetskaya pl., 1

Sergey Yu. Gridnev

Voronezh State Technical University; Moscow Institute of Physics and Technology (National Research University)

Email: gridnev_s_y@rambler.ru
ORCID iD: 0000-0003-2018-6255

Dr. Techn. Sci., Professor, Dept. of Theoretical and Structural Mechanics; Leading Researcher, Lab. of Fluid Dynamics and Seismoacoustics

Russian Federation, 364022, Voronezh, 20-letiya Oktyabrya st., 84; 141701, Dolgoprudny, Institutsky per., 9

Yurii I. Skalko

Moscow Institute of Physics and Technology (National Research University)

Email: skalko@mail.mipt.ru
ORCID iD: 0000-0002-1370-503X

Cand. Phys. & Math. Sci., Associate Professor, Dept. of Computational Mathematics

Russian Federation, Moscow Institute of Physics and Technology (National Research University)

Vladimir S. Saphronov

Voronezh State Technical University

Email: vss22@mail.ru
ORCID iD: 0000-0002-3780-2838

Dr. Techn. Sci., Professor, Dept. of Theoretical and Structural Mechanics

Russian Federation, 364022, Voronezh, 20-letiya Oktyabrya st., 84

Ekaterina E. Alexandrova

Voronezh State University

Email: ilinova-1996@yandex.ru
ORCID iD: 0009-0009-9913-4853

Postgraduate Student, Dept. of Mechanics and Computer Simulation

Russian Federation, 364018, Voronezh, Universitetskaya pl., 1

References

  1. Bolotin V. V. Nonconservative Problems of the Theory of Elastic Stability. New York, Pergamon Press, 1963, 320 pp.
  2. Ershov L. V., Ivlev D. D. The stability of a strip under compression, Sov. Phys., Dokl., 1961, vol. 6, no. 5, pp. 512–514.
  3. Papkovich P. F. On one form of solution of the plane problem of the theory of elasticity for the rectangular strip, Dokl. Akad. Nauk SSSR, 1944, vol. 27, no. 4, pp. 359–374 (In Russian).
  4. Sporykhin A. N., Shashkin A. I. Ustoichivost’ ravnovesiia prostranstvennykh tel i zadachi mekhaniki gornykh porod [Stability of Spatial Equilibrium of Bodies and Problems of the Mechanics of Rock]. Moscow, Fizmatlit, 2004, 232 pp. (In Russian)
  5. Vol’mir A. S. Ustoichivost’ uprugikh sistem [Stability of Elastic Systems]. Moscow, Fizmatgiz, 1963, 880 pp.
  6. Ishlinsky A. Yu. On the problem of elastic bodies equilibrium stability in mathematical theory of elasticity, Ukr. Mat. Zh., 1954, vol. 6, no. 2, pp. 140–146 (In Russian).
  7. Zachepa V. R., Sapronov Yu. I. Lokal’nyi analiz fredgol’movykh uravnenii [Local Analysis of Fredholm Equations]. Voronezh, Voronezh State Univ., 2002, 185 pp. (In Russian)
  8. Minaeva N. V. Adekvatnost’ matematicheskikh modelei deformiruemykh tel [The Adequacy of Mathematical Models of Deformable Bodies]. Moscow, Nauchn. Kniga, 2006, 236 pp. (In Russian)
  9. Kolmogorov A. N., Fomin S. V. Elementy teorii funktsii i funktsional’nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moscow, Fizmatlit, 1976, 543 pp. (In Russian)
  10. Minaeva N. V. Stress strain state of the elastic strip with nearly rectangular cross section, J. Phys.: Conf. Ser., 2018, vol. 973, 012012. EDN: XYEFCX. DOI: https://doi.org/10.1088/1742-6596/973/1/012012.
  11. Minaeva N. V. Linearization of boundary conditions given in integral form on the boundary of a body in a deformed state, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2010, no. 2(8), pp. 344–348 (In Russian). EDN: NXVSIV.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).