The study of the stress-strain state of an elastically supported compressed strip
- Authors: Minaeva N.V.1, Gridnev S.Y.2,3, Skalko Y.I.3, Saphronov V.S.2, Alexandrova E.E.1
-
Affiliations:
- Voronezh State University
- Voronezh State Technical University
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 27, No 3 (2023)
- Pages: 593-601
- Section: Short Communications
- URL: https://journals.rcsi.science/1991-8615/article/view/310988
- DOI: https://doi.org/10.14498/vsgtu1990
- ID: 310988
Cite item
Full Text
Abstract
An analysis has been conducted on the continuous dependence of the function describing the behavior of the real structure on the characteristics of initial imperfections. A condition has been obtained, imposed on the parameter of external influence and the stiffness coefficient of the foundation, when that is violated, the shape of the cross-section of the strip will no longer be close to a rectangle, i.e. the strip loses shape stability. During the study, the parameters of external influences remained independent.
The first version of the article was published in Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki [Current Problems of Applied Mathematics, Computational Science and Mechanics]. Voronezh, 2022. Pp. 1265–1269. (In Russian)
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Nadezhda V. Minaeva
Voronezh State University
Author for correspondence.
Email: nminaeva@yandex.ru
ORCID iD: 0000-0002-9366-5575
Dr. Phys. & Math. Sci., Professor, Dept. of Mechanics and Computer Simulation
Russian Federation, 364018, Voronezh, Universitetskaya pl., 1Sergey Yu. Gridnev
Voronezh State Technical University; Moscow Institute of Physics and Technology (National Research University)
Email: gridnev_s_y@rambler.ru
ORCID iD: 0000-0003-2018-6255
Dr. Techn. Sci., Professor, Dept. of Theoretical and Structural Mechanics; Leading Researcher, Lab. of Fluid Dynamics and Seismoacoustics
Russian Federation, 364022, Voronezh, 20-letiya Oktyabrya st., 84; 141701, Dolgoprudny, Institutsky per., 9Yurii I. Skalko
Moscow Institute of Physics and Technology (National Research University)
Email: skalko@mail.mipt.ru
ORCID iD: 0000-0002-1370-503X
Cand. Phys. & Math. Sci., Associate Professor, Dept. of Computational Mathematics
Russian Federation, Moscow Institute of Physics and Technology (National Research University)Vladimir S. Saphronov
Voronezh State Technical University
Email: vss22@mail.ru
ORCID iD: 0000-0002-3780-2838
Dr. Techn. Sci., Professor, Dept. of Theoretical and Structural Mechanics
Russian Federation, 364022, Voronezh, 20-letiya Oktyabrya st., 84Ekaterina E. Alexandrova
Voronezh State University
Email: ilinova-1996@yandex.ru
ORCID iD: 0009-0009-9913-4853
Postgraduate Student, Dept. of Mechanics and Computer Simulation
Russian Federation, 364018, Voronezh, Universitetskaya pl., 1References
- Bolotin V. V. Nonconservative Problems of the Theory of Elastic Stability. New York, Pergamon Press, 1963, 320 pp.
- Ershov L. V., Ivlev D. D. The stability of a strip under compression, Sov. Phys., Dokl., 1961, vol. 6, no. 5, pp. 512–514.
- Papkovich P. F. On one form of solution of the plane problem of the theory of elasticity for the rectangular strip, Dokl. Akad. Nauk SSSR, 1944, vol. 27, no. 4, pp. 359–374 (In Russian).
- Sporykhin A. N., Shashkin A. I. Ustoichivost’ ravnovesiia prostranstvennykh tel i zadachi mekhaniki gornykh porod [Stability of Spatial Equilibrium of Bodies and Problems of the Mechanics of Rock]. Moscow, Fizmatlit, 2004, 232 pp. (In Russian)
- Vol’mir A. S. Ustoichivost’ uprugikh sistem [Stability of Elastic Systems]. Moscow, Fizmatgiz, 1963, 880 pp.
- Ishlinsky A. Yu. On the problem of elastic bodies equilibrium stability in mathematical theory of elasticity, Ukr. Mat. Zh., 1954, vol. 6, no. 2, pp. 140–146 (In Russian).
- Zachepa V. R., Sapronov Yu. I. Lokal’nyi analiz fredgol’movykh uravnenii [Local Analysis of Fredholm Equations]. Voronezh, Voronezh State Univ., 2002, 185 pp. (In Russian)
- Minaeva N. V. Adekvatnost’ matematicheskikh modelei deformiruemykh tel [The Adequacy of Mathematical Models of Deformable Bodies]. Moscow, Nauchn. Kniga, 2006, 236 pp. (In Russian)
- Kolmogorov A. N., Fomin S. V. Elementy teorii funktsii i funktsional’nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moscow, Fizmatlit, 1976, 543 pp. (In Russian)
- Minaeva N. V. Stress strain state of the elastic strip with nearly rectangular cross section, J. Phys.: Conf. Ser., 2018, vol. 973, 012012. EDN: XYEFCX. DOI: https://doi.org/10.1088/1742-6596/973/1/012012.
- Minaeva N. V. Linearization of boundary conditions given in integral form on the boundary of a body in a deformed state, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2010, no. 2(8), pp. 344–348 (In Russian). EDN: NXVSIV.
Supplementary files
