Parametric analysis of the stress-strain and continuity fields at the crack tip under creep regime taking into account the processes of damage accumulation using UMAT

Cover Page

Cite item

Full Text

Abstract

The subject of this study is the analysis of the stress-strain and continuity fields in the proximal nearness of the crack tip, which is in creep regime conditions with due regard for the accumulation of damage. The aim of the work is to conduct computer finite element modeling of uniaxial stretching of a two-dimensional plate with a central crack under creep conditions and to analyze the continuity field around the crack tip. The Bailey–Norton power law of creep is used in numerical modeling. The simulation was performed in the software multifunctional complex SIMULIA Abaqus. The analysis of the circumferential apportionment of stresses, creep deformations and continuity in the direct of the crack tip is carried out.
The power law of creep with the help of the user procedure UMAT (User Material) of the SIMULIA Abaqus package was supplemented by the kinetic equation of damage accumulation of Kachanov–Rabotnov in a related formulation. The UMAT subroutine has many advantages in predicting material damage and allows you to work with materials that are not in the Abaqus materials library. The UMAT subroutine is called at all points of the material calculation and updates the stresses and state variables depending on the solution to their values at the end of the increment. After that, the updated elements of the Jacobi matrix are calculated.
Stress, strain and continuity distributions under creep conditions are gained, considering the damage accumulation of over time. Angular distributions of continuity, stresses and deformations are constructed using the Matplotlib library over time at various distances from the crack tip. The obtained angular distributions of the stress and strain tensor components are compared when modeling without taking into account damage and when taking into account damage accumulation. It is shown that the presence of damage leads to large values of creep deformations and lower stresses.

About the authors

Dmitriy V. Chapliy

Samara National Research University

Email: Dch300189@yandex.ru
ORCID iD: 0000-0001-9510-3659
SPIN-code: 3262-0330
ResearcherId: GSI-6114-2022

Postgraduate Student, Dept. of Mathematical Modelling in Mechanics

Russian Federation, 443086, Samara, Moskovskoye shosse, 34

Larisa V. Stepanova

Samara National Research University

Author for correspondence.
Email: Stepanova.lv@ssau.ru
ORCID iD: 0000-0002-6693-3132
SPIN-code: 7564-6513
Scopus Author ID: 7102960155

Dr. Phys. & Math. Sci., Associate Professor, Head of Department, Dept. of Mathematical Modelling in Mechanics

Russian Federation, 443086, Samara, Moskovskoye shosse, 34

Oksana N. Belova

Samara National Research University

Email: belova.on@ssau.ru
ORCID iD: 0000-0002-4492-223X

Assistant, Dept. of Mathematical Modelling in Mechanics

Russian Federation, 443086, Samara, Moskovskoye shosse, 34

References

  1. Kachanov L. M. Time of the rupture process under creep conditions, Izv. Akad. Nauk. SSSR, Otd. Tekhn. Nauk, 1958, no. 8, pp. 26–31 (In Russian).
  2. Rabotnov Yu. N. On a mechanism of delayed failure, In: Voprosy prochnosti materialov i konstruktsii [Questions of Strength of Materials and Construction]. Moscow, USSR Academy of Sci., 1959, pp. 5–7 (In Russian).
  3. Kachanov L. M. Teoriia plastichnosti [Creep Theory]. Moscow, Fizmatlit, 1960, 455 pp. (In Russian)
  4. Rabotnov Yu. N. Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics. Amsterdam, London, North-Holland Publ., 1969, ix+822 pp.
  5. Lokoshchenko A. M., Fomin L. V., Teraud W. V., et al. Creep and long-term strength of metals under unsteady complex stress states (Review), Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 2, pp. 275–318 (In Russian). EDN: OQCCVC. DOI: https://doi.org/10.14498/vsgtu1765.
  6. Meng Q., Zhenqing H. Creep damage models and their applications for crack growth analysis in pipes: A review, Eng. Fract. Mech., 2019, vol. 205, pp. 547–576. DOI: https://doi.org/10.1016/j.engfracmech.2015.09.055.
  7. Meng L., Chen W., Yan Y., et al. Modelling of creep and plasticity deformation considering creep damage and kinematic hardening, Eng. Fract. Mech., 2019, vol. 218, 106582. DOI: https://doi.org/10.1016/j.engfracmech.2019.106582.
  8. Murakami S. Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Dordrecht, Springer, 2012, xxx+402 pp. DOI: https://doi.org/10.1007/978-94-007-2666-6.
  9. Riedel H. Fracture at High Temperatures. Berlin, Heidelberg, Springer-Verlag, 1987, 418 pp.
  10. Wen J.-F., Tu S.-T., Gao X.-L., Reddy J. N. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model, Eng. Fract. Mech., 2012, vol. 98, pp. 169–184. DOI: https://doi.org/10.1016/j.engfracmech.2012.12.014.
  11. Rabotnov Yu. N. Vvedenie v mekhaniku razrusheniia [Introduction to the Mechanics of Destruction]. Moscow, Nauka, 1987, 80 pp.
  12. Boyle J. T., Spence J. Stress Analysis for Creep. Glasgow, Scotland, Butterworth-Heinemann, 1983, viii+283 pp. DOI: https://doi.org/10.1016/C2013-0-00873-0.
  13. Shlyannikov V. N., Tumanov A. V. Force and deformation models of damage and fracture during creep, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 70–85 (In Russian). EDN: XRGSGD. DOI: https://doi.org/10.24411/1683-805X-2018-13008.
  14. Shlyannikov V. N., Tumanov A. V. Creep damage and stress intensity factor assessment for plane multi-axial and three-dimensional problems, Int. J. Solids Structures, 2018, vol. 150, pp. 166–183. EDN: XWIKMX. DOI: https://doi.org/10.1016/j.ijsolstr.2018.06.009.
  15. Stepanova L. V. Computational simulation of the damage accumulation processes in cracked solids by the user procedure UMAT of Simulia Abaqus., PNRPU Mechanics Bulletin, 2018, no. 3, pp. 71–86 (In Russian). EDN: YLJEXZ. DOI: https://doi.org/10.15593/perm.mech/2018.3.08.
  16. Astaf’ev V. I., Radaev Iu. N., Stepanova L. V. Nelineinaia mekhanika razrusheniia [Nonlinear Fracture Mecahics]. Samara, Samara Univ., 2001, 632 pp. (In Russian). EDN: RVXEBX.
  17. Wu Y., Li G., Tan F., et al. Research on creep damage model of high alumina bricks, Ceramics Int., 2022, vol. 48, no. 19, Part A, pp. 27758–27764. DOI: https://doi.org/10.1016/j.ceramint.2022.06.076.
  18. Stewart C. M. A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage, Ph.D. Dissertation. Orlando, Florida, University of Central Florida, 2013. https://stars.library.ucf.edu/etd/2789/.
  19. Liu L. Y., Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis, Eng. Fract. Mech., 1998, vol. 41, no. 1, pp. 57–65. DOI: https://doi.org/10.1299/jsmea.41.57.
  20. Vanaja J., Laha K., Mathew M. D. Effect of tungsten on primary creep deformation and minimum creep rate of reduced activation ferritic-martensitic steel, Metall. Mater. Trans. A, 2014, vol. 45, no. 11, pp. 5076–5084. DOI: https://doi.org/10.1007/s11661-014-2472-1.
  21. Ro U., Kim S., Kim Y., Kim M. K. Creep-fatigue damage analysis of modified 9Cr–1Mo steel based on a Voronoi crystalline model, Int. J. Pressure Vessels Piping, 2021, vol. 194, Part B, 104541. DOI: https://doi.org/10.1016/j.ijpvp.2021.104541.
  22. Dyson B. Use of CDM in materials modeling and component creep life prediction, J. Pressure Vessel Technol., 2000, vol. 122, no. 3, pp. 281–296. DOI: https://doi.org/10.1115/1.556185.
  23. Abdel Wahab M. M., Ashcroft I. A., Crocombe A. D., Shaw S. J. Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics, J. Adh. Sci. Techn., 2001, vol. 15, no. 7, pp. 763–781. DOI: https://doi.org/10.1163/15685610152540830.
  24. He Q., Wu F., Gao R. Nonlinear creep-damage constitutive model of surrounding rock in salt cavern reservoir, J. Energy Storage, 2022, vol. 55, Part B, 105520. DOI: https://doi.org/10.1016/j.est.2022.105520.
  25. Dummer A., Neuner M., Hofstetter G. An extended gradient-enhanced damage-plasticity model for concrete considering nonlinear creep and failure due to creep, Int. J. Solids Struct., 2022, vol. 243, 111541. DOI: https://doi.org/10.1016/j.ijsolstr.2022.111541.
  26. Belova O. N., Chapliy D. V., Stepanova L. V. Application of the UMAT subroutine for solving continuum mechanics problems (Review), Vestn. Samar. Univ., Estestvennonauchn. Ser., 2021, vol. 27, no. 3, pp. 46–73 (In Russian). EDN: STPKCU. DOI: https://doi.org/10.18287/2541-7525-2021-27-3-46-73.
  27. Ilin V. N., Mordashov S. V., Pusach S.V. Laws of creep for computation of fire resisance for steel equipment, Technology of Technosphere Safety, 2008, no. 6, 10 (In Russian). EDN: MSMCAF.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Distributions of the stress tensor components \(\sigma_{11}\) (a–d) and \(\sigma_{22}\) (e–h) under creep conditions at 0.2, 103, 1003 and 5000 hours

Download (786KB)
3. Figure 2. Distributions of the stress tensor components \(\sigma_{11}\) (a–d) and \(\sigma_{22}\) (e–h) under creep conditions taking into account damage accumulation processes at 0.2, 103, 1003 and 5000 hours

Download (815KB)
4. Figure 3. Continuity distributions at 103 and 1003 hours

Download (186KB)
5. Figure 4. Comparison of angular distributions of stress tensor components (a–с) and creep strains (d–f) under creep conditions without taking into account damage (solid curves) and taking into account damage accumulation processes (dotted curves) over time

Download (1MB)
6. Figure 5. Comparison of angular distributions of stress tensor components (a–с) and creep strains (d–f) under creep conditions without taking into account damage (solid curves) and taking into account damage accumulation processes (dotted curves) at 5000 hours at different distances from the crack tip

Download (1MB)
7. Figure 6. Angular distributions of the continuity parameter \(\psi\)

Download (209KB)
8. Figure 7. Continuity distributions near the tip of an inclined crack: a) when \(m=1.5\) at 53 hours; b) when \(m=4\) after 5000 hours

Download (181KB)
9. Figure 8. Continuity distributions near the tip of an inclined crack (\(\gamma=45^\circ\)) at 103 and 1003 hours

Download (193KB)
10. Figure 9. Continuity distributions near the tip of an inclined crack (\(\gamma=60^\circ\)) at 103 and 1003 hours

Download (186KB)
11. Figure 10. Distributions of the Mises stress intensity (a–d) and creep strain tensor component \(\varepsilon_{11}\) (e–h) under creep conditions taking into account damage accumulation processes in the neighborhood of the tip of the inclined crack (\(\gamma=45^\circ\)) at 0.2, 103, 1003 and 5000 hours

Download (786KB)
12. Figure 11. Distributions of the Mises stress intensity (a–d) and creep strain tensor component \(\varepsilon_{11}\) (e–h) under creep conditions taking into account damage accumulation processes in the neighborhood of the tip of the inclined crack (\(\gamma=60^\circ\)) at 0.2, 103, 1003 and 5000 hours

Download (758KB)
13. Figure 12. Comparison of angular distributions of stress tensor components (a–c) and creep strains (d–f) under creep conditions without taking into account damage (solid curves) and taking into account damage accumulation processes (dotted curves) at 5000 hours at different distances from the inclined crack tip (\(\gamma=45^\circ\))

Download (1MB)
14. Figure 13. Angular distributions of the continuity parameter \(\psi\) in the neighborhood of the tip of the inclined crack (\(\gamma=45^\circ\))

Download (216KB)
15. Figure 14. Comparison of angular distributions of stress tensor components (a–c) and creep strains (d–f) under creep conditions without taking into account damage (solid curves) and taking into account damage accumulation processes (dotted curves) at 5000 hours at different distances from the inclined crack tip (\(\gamma=60^\circ\))

Download (1MB)
16. Figure 15. Angular distributions of the continuity parameter \(\psi\) in the neighborhood of the tip of the inclined crack (\(\gamma=60^\circ\))

Download (194KB)

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».