Упругая составная плоскость с частично оторванным от матрицы межфазным абсолютно жестким тонким включением с учетом проскальзывания на концах

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрено плоско-деформированное состояние базовой плоскости упругого составного пространства с трещиной конечной длины на линии соединения составляющих полуплоскостей. В один из берегов межфазной трещины под действием сосредоточенной силы вдавливается абсолютно жесткое тонкое включение такой же длины. Для контактирующей стороны включения полагается, что в средней ее части имеет место сцепление с матрицей, а по краям происходит проскальзывание, описываемое законом сухого трения. Задача сформулирована в виде системы сингулярных интегральных уравнений. Исследовано поведение искомых функций в окрестности концов включения-трещины и в точках раздела зон сцепления и проскальзывания. Определяющая система интегральных уравнений решается методом механических квадратур. Найдены законы распределения контактных напряжений, а также длины зон сцепления и проскальзывания в зависимости от коэффициента трения, коэффициентов Пуассона и отношения модулей Юнга материалов полуплоскостей, а также угла наклона внешней силы.

Об авторах

Ваграм Наслетникович Акопян

Институт механики НАН Республики Армения

Автор, ответственный за переписку.
Email: vhakobyan@sci.am
ORCID iD: 0000-0003-3684-9471
Scopus Author ID: 55914871100
http://www.mathnet.ru/person141845

доктор физико-математических наук, главный научный сотрудник, отд. механики упругих и вязкоупругих тел

Армения, 0019, Ереван, пр. Маршала Баграмяна, 24Б

Арутюн Арменович Амирджанян

Институт механики НАН Республики Армения

Email: amirjanyan@gmail.com
ORCID iD: 0009-0008-8417-7319

кандидат физико-математических наук, ведущий научный сотрудник, отд. механики упругих и вязкоупругих тел

Армения, 0019, Ереван, пр. Маршала Баграмяна, 24Б

Лилит Левоновна Даштоян

Институт механики НАН Республики Армения

Email: lilit.dashtoyan@sci.am
ORCID iD: 0009-0008-4737-4524

кандидат физико-математических наук, ученый секретарь

Армения, 0019, Ереван, пр. Маршала Баграмяна, 24Б

Аветик Вараздатович Саакян

Институт механики НАН Республики Армения

Email: avetik.sahakyan@sci.am
ORCID iD: 0000-0002-5904-6201

доктор физико-математических наук, ведущий научный сотрудник, отд. механики упругих и вязкоупругих тел

Армения, 0019, Ереван, пр. Маршала Баграмяна, 24Б

Список литературы

  1. Галин Л. А. Контактные задачи теории упругости и вязкоупругости. М.: Наука, 1980. 304 с.
  2. Попов Г. Я. Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений. М.: Наука, 1982. 344 с.
  3. Панасюк В. В., Саврук М. П., Дацышин А. П. Распределение напряжений около трещин в пластинах и оболочках. Киев: Наукова думка, 1976. 443 с.
  4. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.
  5. Бережницкий Л. Т., Панасюк В. В., Стащук Н. Г. Взаимодействие жестких линейных включений и трещин в деформируемом теле. Киев: Наукова думка, 1983. 288 с.
  6. Hakobyan V. N. Stress Concentrators in Continuous Deformable Bodies / Advanced Structured Materials. vol. 181. Cham: Springer, 2022. xx+380 pp. DOI: https://doi.org/10.1007/978-3-031-16023-3.
  7. Hakobyan V. N., Hakobyan L. V. Dashtoyan L. L. Contact problem for a piecewisehomogeneous plane with an interfacial crack under dry friction // J. Phys.: Conf. Ser., 2022. vol. 2231, 012024. DOI: https://doi.org/10.1088/1742-6596/2231/1/012024.
  8. Ильина И. И., Сильвестров В. В. Задача о тонком жестком межфазном включении, отсоединившемся вдоль одной стороны от среды // Изв. РАН. МТТ, 2005. №3. С. 153–166. EDN: HSIWCR.
  9. Галин Л. А. Вдавливание штампа при наличии трения и сцепления // ПММ, 1945. Т. 9, №5. С. 413–424.
  10. Моссаковский В. И., Бискуп А. Г. Вдавливание штампа при наличии трения и сцепления // Докл. АН СССР, 1972. Т. 206, №5. С. 1068–1070.
  11. Антипов Ю. А., Арутюнян Н. Х. Контактные задачи теории упругости при наличии трения и сцепления // ПММ, 1991. Т. 55, №6. С. 1005–1017.
  12. Wayne Chen W., Jane Wang Q. A numerical model for the point contact of dissimilar materials considering tangential tractions // Mech. Mater., 2008. vol. 40, no. 11. pp. 936–948. DOI: https://doi.org/10.1016/j.mechmat.2008.06.002.
  13. Острик В. И. Вдавливание штампа в упругую полосу при наличии трения и сцепления // Изв. РАН. МТТ, 2011. №5. С. 118–129. EDN: OJMYEL.
  14. Саакян А. В. Решение контактной задачи с зонами трения и сцепления (задача Галина) методом дискретных особенностей / Развитие идей Л. А. Галина в механике: Сб. науч. тр. М.–Ижевск, 2013. С. 103–120 http://www.mechins.sci.am/publ/avetik_sahakyan/ColGalin100.pdf.
  15. Кротов С. В., Кононов Д. П., Пакулина Е. В. Напряженное состояние в контакте колеса и рельса при наличии скольжения и сцепления // Известия Петербургского университета путей сообщения, 2021. Т. 18, №2. С. 177–187. EDN: LRITHA. DOI: https://doi.org/10.20295/1815-588X-2021-2-177-187.
  16. Hakobyan V. N., Amirjanyan H. A., Dashtoyan L. L., Sahakyan A. V. Indentation of an absolutely rigid thin inclusion into one of the crack faces in an elastic plane under slippage at the ends / H. Altenbach, S. M. Bauer, A. K. Belyaev, et al. (eds) Advances in Solid and racture Mechanics / Advanced Structured Materials, 180. Cham: Springer, 2022. pp. 85–96. DOI: https://doi.org/10.1007/978-3-031-18393-5_6.
  17. Sahakyan A. V., Amirjanyan H. A. Method of mechanical quadratures for solving singular integral equations of various types // J. Phys.: Conf. Ser., 2018. vol. 991, 012070. DOI: https://doi.org/10.1088/1742-6596/991/1/012070.
  18. Мусхелишвили Н. И. Сингулярные интегральные уравнения. Граничные задачи теории функций и некоторые их приложения к математической физике. М.: Наука, 1968. 510 с.
  19. Dundurs J. Discussion: “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading” (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460–466) // J. Appl. Mech., 1969. vol. 36, no. 3. pp. 650–652. DOI: https://doi.org/10.1115/1.3564739.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схематическое представление задачи

Скачать (158KB)
3. Рис. 2. Распределение безразмерных нормальных контактных напряжений для разных значений отношения \(\mu=\mu_1/\mu_2\) и коэффициента Пуассона \(\nu_2\) (онлайн в цвете)

Скачать (181KB)
4. Рис. 3. Распределение безразмерных тангенциальных контактных напряжений для разных значений отношения \(\mu=\mu_1/\mu_2\) и коэффициента Пуассона \(\nu_2\) (онлайн в цвете)

Скачать (150KB)
5. Рис. 4. Зависимость \(b^*\) и \(c^*\) от отношения \(\mu=\mu_1/\mu_2\) (онлайн в цвете)

Скачать (125KB)
6. Рис. 5. Зависимость \(b^*\) и \(c^*\) от угла наклона внешней силы (онлайн в цвете)

Скачать (123KB)

© Авторский коллектив; Самарский государственный технический университет (составление, дизайн, макет), 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).