On the algorithms of dynamic programming for optimal processes
- Authors: Ovchinnikov V.G1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 16, No 3 (2012)
- Pages: 215-218
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20908
- ID: 20908
Cite item
Abstract
The problem of discrete optimal control which has m consistently applied objective functions is formulated. In this problem the optimal process, also called m-optimal, is sought as a pair of functions defined on a finite set of steps at the links by which one function is uniquely defines the other, with the constraints of these functions with inclusion “∈” of their values in the final multiple values of the functions of the known pair. A uniform representation of sets, forming the k-optimal processes for k not greater than m, is given with construction of nondecreasing sequence, upper limited by this pair by the “⊂” inclusions, on the basis of characterization of solvability of the problem.
Full Text
##article.viewOnOriginalSite##About the authors
Valeriy G Ovchinnikov
Samara State Technical University
Email: ovchinnikov42@mail.ru
Senior Lecturer, Dept. of Oil and Gas Fields Development 244, Molodogvardeyskaya st., Samara, 443100, Russia
References
- Хачатуров В. Р., Веселовский В. Е., Злотов А. В., Калдябаев С. У., Калиев Е. Ж., Коваленко А. Г., Монтлевич В. М., Сигал И. Х., Хачатуров Р. В. Комбинаторные методы и алгоритмы решения задач дискретной оптимизации большой размерности. М.: Наука, 2000. 353 с.
- Овчинников В. Г. Алгоритмы динамического программирования оптимальных и близких к ним процессов / В сб.: Труды пятой Всероссийской научной конференции с международным участием (29–31 мая 2008 г.). Часть 4: Информационные технологии в математическом моделировании / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2008. С. 107–112.
Supplementary files

