Свойства интегральной кривой и решения неавтономной системы обыкновенных дифференциальных уравнений


Цитировать

Полный текст

Аннотация

Рассматривается неавтономная система обыкновенных дифференциальных уравнений, для которой вводится в рассмотрение функция плотности вероятности распределения ансамбля изображающих точек Гиббса, обладающая всеми свойствами, характерными для функции плотности вероятности, а также удовлетворяющая уравнению в частных производных первого порядка (уравнению Лиувилля). Показано, что такая функция плотности вероятности распределения существует и является единственным решением задачи Коши для уравнения Лиувилля. Рассматриваются свойства интегральной кривой и решения неавтономной системы обыкновенных дифференциальных уравнений. Показано, что при определённых предположениях движение вдоль траекторий системы осуществляется по максимуму функции плотности вероятности распределения, т.е. при выполнении всех требуемых условий интегральная кривая неавтономной системы обыкновенных дифференциальных уравнений в любой момент времени является наиболее вероятной траекторией движения последней. Для линейной неавтономной системы обыкновенных дифференциальных уравнений показано, что движение вдоль траекторий осуществляется по моде функции плотности вероятности распределения, и найдена оценка её решения.

Об авторах

Геннадий Алексеевич Рудых

Институт математики, экономики и информатики Иркутского государственного университета

Email: rudykh@icc.ru
(д.ф.-м.н., проф.), профессор, каф. математического анализа и дифференциальных уравнений; Институт математики, экономики и информатики Иркутского государственного университета

Дарья Яковлевна Киселевич

Институт математики, экономики и информатики Иркутского государственного университета

Email: dariakis@mail.ru
аспирант, каф. математического анализа и дифференциальных уравнений; Институт математики, экономики и информатики Иркутского государственного университета

Список литературы

  1. Steeb W.-H. Generalized Liouville equation, entropy, and dynamic systems containing limit cycles // Physica A, 1979. Т. 95, № 1. С. 181-190.
  2. Красносельский М. А. Оператор сдвига по траекториям дифференциальных уравнений. М.: Наука, 1966. 331 с.
  3. Треногин В. А. Функциональный анализ. М.: Физматлит, 2002. 448 с.
  4. Зубов В. И. Динамика управляемых систем. М.: Высш. шк., 1982. 285 с.
  5. Nemytskiy V. V., Stepanov V. V. Qualitative Theory of Differential Equations. Moscow-Leningrad: Gostekhizdat, 1949. 550 p.
  6. Леонов Г. А. Странные аттракторы и классическая теория устойчивости движения. СПб.: СПб. ун-т, 2004. 144 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».