Приближенное аналитическое решение задачи для трубы с эллиптическим внешним контуром в условиях установившейся ползучести
- Авторы: Москалик А.Д.1
-
Учреждения:
- Самарский государственный технический университет
- Выпуск: Том 18, № 4 (2014)
- Страницы: 65-84
- Раздел: Статьи
- URL: https://journals.rcsi.science/1991-8615/article/view/20753
- DOI: https://doi.org/10.14498/vsgtu1365
- ID: 20753
Цитировать
Полный текст
Аннотация
Рассмотрена краевая задача установившейся ползучести для толстостенной трубы с внешним эллиптическим контуром, находящейся под внутренним давлением. Приближенное аналитическое решение данной задачи строится для плоского деформированного состояния методом малого параметра до второго приближения включительно. Используется гипотеза несжимаемости материала для деформаций ползучести. В качестве малого параметра используется величина сжатия эллипса для внешнего контура трубы. Анализ аналитического решения выполнен в зависимости от параметра нелинейности установившейся ползучести и параметра сжатия эллипса - отношения разности большой и малой полуоси эллипса к большой полуоси, являющейся внешним радиусом невозмущенной толстостенной трубы. Показано, что при возрастании величины сжатия эллипса до 0.1 внешнего радиуса трубы тангенциальные напряжения в опасном сечении при θ = π/2 возрастают в 1.7-1.8 раза. Приводятся результаты расчетов в табличной и графической форме.
Полный текст
Открыть статью на сайте журналаОб авторах
Анна Давидовна Москалик
Самарский государственный технический университет
Email: annmoskalik1@gmail.com
аспирант, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244
Список литературы
- Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960. 455 с.
- Радченко В. П., Башкинова Е. В. Решение краевых задач установившейся ползучести в полярных координатах методом возмущений // Вестн. Сам. гос. техн. ун-та. Сер. Техн. науки, 1998. № 5. С. 86-91.
- Башкинова Е. В. Решение краевой задачи установившейся ползучести для неосесимметричной толстостенной трубы // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2002. № 16. С. 105-110. doi: 10.14498/vsgtu106.
- Москалик А. Д. Применение метода возмущений к задаче о несоосной трубе в условиях установившейся ползучести // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 4(33). С. 76-85. doi: 10.14498/vsgtu1290.
- Hill R., Hutchinson J. W. Bifurcation phenomena in the plane tension test // J. Mech. Phys. solids, 1975. vol. 23. pp. 239-264. doi: 10.1016/0022-5096(75)90027-7.
- Stören S., Rice J. R. Localized necking in thin sheets // J. Mech. Phys. solids, 1975. vol. 23, no. 6. pp. 421-441. doi: 10.1016/0022-5096(75)90004-6.
- Hutchinson J. W., Neale K. W. Influence of strain-rate sensitivity on necking under uniaxial tension // Acta Metallurgica, 1977. vol. 25, no. 8. pp. 839-846. doi: 10.1016/0001-6160(77)90168-7.
- Келлер И. Э. Равновесные формы свободной границы при одноосном растяжении нелинейно-вязкой полосы // ПМТФ, 2010. Т. 51, № 1. С. 117-124.
- Радченко В. П., Попов Н. Н. Аналитическое решение стохастической краевой задачи установившейся ползучести для толстостенной трубы // ПММ, 2012. Т. 76, № 6. С. 1023-1031.
- Должковой А. А., Попов Н. Н. Решение нелинейной стохастической задачи ползучести для толстостенной трубы методом малого параметра // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2002. № 16. С. 84-89. doi: 10.14498/vsgtu102.
- Попов Н. Н., Исуткина В. Н. Построение аналитического решение двумерной стохастической задачи установившейся ползучести для толстостенной трубы // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2007. № 2(15). С. 57-61. doi: 10.14498/vsgtu535.
- Должковой А. А., Попов Н. Н., Радченко В. П. Решение стохастической краевой задачи установившейся ползучести для толстостенной трубы методом малого параметра // ПМТФ, 2006. Т. 47, № 1. С. 161-171.
- Коваленко Л. В., Попов Н. Н., Радченко В. П. Решение плоской стохастической краевой задачи ползучести // ПММ, 2009. Т. 73, № 6. С. 1009-1016.
- Попов Н. Н., Самарин Ю. П. Исследование полей напряжений вблизи границы стохастически неоднородной полуплоскости при ползучести // ПМТФ, 1988. № 1. С. 159-164.
- Ивлев Д. Д., Ершов Л. В. Метод возмущений в теории упругопластического тела. М.: Наука, 1978. 208 с.
- Кержаев А. П. Упругопластическое состояние тонкой кольцевой пластины при наличии трансляционной анизотропии при равномерном растяжении // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2012. № 2(12). С. 174-179.
- Фоминых С. О. Упругопластическое состояние толстостенной трубы при взаимодействии различных видов пластической анизотропии // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2011. № 1(9). С. 201-2016.
- Никитин А. В., Тихонов С. В. Предельное состояние многослойной трансляционноанизотропной толстостенной трубы, находящейся под действием внутреннего давления // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2014. № 1(19). С. 88-94.
- Кульпина Т. А. Анизотропная эксцентричная труба с учетом сжимаемости материала // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2010. № 1(65). С. 46-50.
- Павлова Т. Н. Об определении перемещений в задаче напряженно-деформированного состояния тонкой пластины с эллиптическим отверстием // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2010. № 1(65). С. 64-69.
- Ярдыкова Н. А. Упругопластическое состояние пространства, ослабленного цилиндрической полостью, находящегося под действием давления, крутящих и продольных сдвигающих усилий: Дис.. канд. физ.-мат. наук: 01.02.04. Чебоксары, 2006. 73 с.
- Мирсалимов В. М. Неодномерные упругопластические задачи. М.: Наука, 1987. 256 с.
- Никитенко А. Ф. Ползучесть и длительная прочность металлических материалов. Новосибирск: НГАСУ, 1997. 278 с.
- Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1979. 744 с.
- Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 с.
- Малинин Н. Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 400 с.
- Радченко В. П., Саушкин М. Н. Ползучесть и релаксация остаточных напряжений в упрочненных конструкциях. М.: Машиностроение-1, 2005. 226 с.
Дополнительные файлы

