The optimal location of the polygonal internal supports to the circular rigid-plastic plates
- Authors: Romanova T.P1
-
Affiliations:
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 18, No 3 (2014)
- Pages: 94-105
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20751
- DOI: https://doi.org/10.14498/vsgtu1312
- ID: 20751
Cite item
Full Text
Abstract
The general solution of a problem of the limit behavior and dynamic bend is obtained for the perfect rigid-plastic circular plates, hinge supported on immobile polygonal contour, located inside the plate. The plate is subjected to short-term dynamic load of explosive type with high intensity, uniformly distributed over the surface. It is shown that there are several mechanisms of limit and dynamic deformation of plates depending on the location of the support contour. The simple analytic expressions are obtained for the limit load and maximum final deflection of plates. The optimal location of support and the number of sides of the polygonal contour are determined, at which the plate has maximum limit load. Numerical examples are given. Keywords: rigid-plastic plate, circular plate, internal polygonal support, explosive load, limit load, final deflection, optimal location of support.
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana P Romanova
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
Email: lab4nemir@gmail.com
(Cand. Phys. & Math. Sci.; lab4nemir@gmail.com), Senior Researcher, Lab. of the Physics of Fast Processes 4/1, Institutskaya st., Novosibirsk, 630090, Russian Federation
References
- Hopkins H. G., Prager W. On the dynamics of plastic circular plates // Z. Angew. Math. Phys., 1954. vol. 5, no. 4. pp. 317-330. doi: 10.1007/BF01587827.
- Jones N. A literature review of the dynamic plastic response of structures // The Shock and Vibration Digest, 1975. vol. 7, no. 8. pp. 89-105. doi: 10.1177/058310247500700809.
- Оленев Г. М. Оптимальное расположение дополнительных опор к жёсткопластическим круглым пластинкам в случае импульсного нагружения // Уч. зап. Тартуского гос. унта, 1983. Т. 659. С. 30-41.
- Комаров К. Л., Немировский Ю. В. Динамика жёсткопластических элементов конструкций. Новосибирск: Наука, 1984. 234 с.
- Немировский Ю. В., Романова Т. П. Динамический изгиб пластических полигональных плит // ПМТФ, 1988. № 4. С. 149-156.
- Reid S. R., Harrigan J. J. Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes // International Journal of Mechanical Sciences, 1998. vol. 40, no. 2-3. pp. 263-280. doi: 10.1016/S0020-7403(97)00054-4.
- Velasco J. I., Martínez A. B., Arencón D., Rodríıguez-Pérez M. A., De Saja J. A. Application of instrumented falling dart impact to the mechanical characterization of thermoplastic foams // Journal of Materials Science, 1999. vol. 34, no. 3. pp. 431-438. doi: 10.1023/A:1004565822502.
- Jones N., Jones C. Inelastic failure of fully clamped beams and circular plates under impact loading // Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2. vol. 216. pp. 133-150. doi: 10.1243/0954406021525070.
- Casapulla C., Maione A. Structural response to transverse impact loading. Some orders of magnitude // Advances in Earthquake Engineering, 2003. vol. 13. pp. 131-140.
- Немировский Ю. В., Романова Т. П. Моделирование динамического поведения двусвязной жeсткопластической криволинейной пластины, закреплeнной по внутреннему контуру / Труды пятой Всероссийской научной конференции с международным участием (29-31 мая 2008 г.). Часть 1: Математические модели механики, прочности и надёжности элементов конструкций / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2008. С. 197-207, http://mi.mathnet.ru/mmkz1021.
- Romanova T., Nemirovsky Yu. Dynamic rigid-plastic deformation of arbitrarily shaped plates // Journal of Mechanics of Materials and Structures, 2008. vol. 3, no. 2. pp. 313-334. doi: 10.2140/jomms.2008.3.313.
- Jones N. Impact loading of ductile rectangular plates // Thin-Walled Structures, 2012. vol. 50, no. 1. pp. 68-75. doi: 10.1016/j.tws.2011.09.006.
- Немировский Ю. В., Романова Т. П. Моделирование предельного и динамического поведения жёсткопластической пластины произвольной формы с внутренней криволинейной опорой // Вестн. Чувашского гос. педагог. ун-та. Сер. Механика предельного состояния, 2013. № 3(17). С. 89-96.
- Chen F. L., Yu T. X. Membrane factor method for large deflection response of beams and plates to intense dynamic loading // WIT Transactions on the Built Environment, 2014. vol. 141. pp. 59-71. doi: 10.2495/SUSI140061.
- Ерхов М. И. Теория идеально пластических тел и конструкций. М.: Наука, 1978. 352 с.
Supplementary files

