Comparative analysis of the approximate analytical and finite element solutions for misaligned tube


Cite item

Full Text

Abstract

The boundary value problem of steady-state creep for thick-walled misaligned tube under internal pressure was considered. The approximate analytical solution of this problem by method of small parameter including the second approach is under construction. The solution for the state of plane deformation is constructed. The hypothesis of incompressibility of material for creep strain is used. As a small parameter the misalignment of the centers of the inner and outer radii of the tube is used. The main attention to the convergence of the resulting analytical solution considering the second approximation and assessment of its error is paid. It is noted that the convergence problem is solved only for boundary value problems in the theory of elasticity. Therefore the error assessment in the problem is solved on the basis of a comparison of the approximate analytical solution with the numerical solution constructed on the finite element method, for some special cases. Considering the symmetry of the problem, the finite element model was built for the half tube. The number of finite elements is about 18,000. Considering the symmetry of the problem the second half of the tube is replaced by boundary conditions. Analysis of analytical and numerical solutions is executed depending on the steady-state creep nonlinearity parameter and misaligned parameter that is ratio of the misalignment of the centers of the outer and inner diameter to the outer radius. It is shown that the error of deviation of the approximate analytical solution in the second approximation from numerical solution until the misalignment value of the centers of the inner and outer diameters of 0.1 for the tubes with small exponent of the steady-state creep (3 to 8) is not more than 9 %, and error to 8 % for the tubes with a large exponent of the steady-state creep nonlinearity is observed in the misaligned parameter to 0.06. Results of computations are presented in tabular form and in the form of graphs. Recommendations for the use of the constructed approximate analytical solution in applied problems are given.

About the authors

Vladimir P Radchenko

Samara State Technical University

Email: radch@samgtu.ru
(Dr. Phys. & Math. Sci., Professor; radch@samgtu.ru), Head of Department, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anna D Moskalik

Samara State Technical University

Email: annmoskalik1@gmail.com
Postgraduate Student, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Igor' E Adeyanov

Samara State Technical University

Email: adigorev@gmail.com
(Cand. Techn. Sci.; adigorev@gmail.com), Associate Professor, Dept. of Mechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Hill R., Hutchinson J. W. Bifurcation phenomena in the plane tension test // J. Mech. Phys. solids, 1975. vol. 23. pp. 239-264. doi: 10.1016/0022-5096(75)90027-7.
  2. Stören S., Rice J. R. Localized necking in thin sheets // J. Mech. Phys. solids, 1975. vol. 23, no. 6. pp. 421-441. doi: 10.1016/0022-5096(75)90004-6.
  3. Hutchinson J. W., Neale K. W. Influence of strain-rate sensitivity on necking under uniaxial tension // Acta Metallurgica, 1977. vol. 25, no. 8. pp. 839-846. doi: 10.1016/0001-6160(77)90168-7.
  4. Келлер И. Э. Равновесные формы свободной границы при одноосном растяжении нелинейно-вязкой полосы // ПМТФ, 2010. Т. 51, № 1. С. 117-124.
  5. Радченко В. П., Попов Н. Н. Аналитическое решение стохастической краевой задачи установившейся ползучести для толстостенной трубы // ПММ, 2012. Т. 76, № 6. С. 1023-1031.
  6. Должковой А. А., Попов Н. Н. Решение нелинейной стохастической задачи ползучести для толстостенной трубы методом малого параметра // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2002. № 16. С. 84-89. doi: 10.14498/vsgtu102.
  7. Попов Н. Н., Исуткина В. Н. Построение аналитического решение двумерной стохастической задачи установившейся ползучести для толстостенной трубы // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2007. № 2(15). С. 57-61. doi: 10.14498/vsgtu535.
  8. Должковой А. А., Попов Н. Н., Радченко В. П. Решение стохастической краевой задачи установившейся ползучести для толстостенной трубы методом малого параметра // ПМТФ, 2006. Т. 47, № 1. С. 161-171.
  9. Коваленко Л. В., Попов Н. Н., Радченко В. П. Решение плоской стохастической краевой задачи ползучести // ПММ, 2009. Т. 73, № 6. С. 1009-1016.
  10. Попов Н. Н., Самарин Ю. П. Исследование полей напряжений вблизи границы стохастически неоднородной полуплоскости при ползучести // ПМТФ, 1988. № 1. С. 159-164.
  11. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960. 455 с.
  12. Радченко В. П., Башкинова Е. В. Решение краевых задач установившейся ползучести в полярных координатах методом возмущений // Вестн. Сам. гос. техн. ун-та. Сер. Техн. науки, 1998. № 5. С. 86-91.
  13. Башкинова Е. В. Решение краевой задачи установившейся ползучести для неосесимметричной толстостенной трубы // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2002. № 16. С. 105-110. doi: 10.14498/vsgtu106.
  14. Ивлев Д. Д., Ершов Л. В. Метод возмущений в теории упругопластического тела. М.: Наука, 1978. 208 с.
  15. Кержаев А. П. Упругопластическое состояние тонкой кольцевой пластины при наличии трансляционной анизотропии при равномерном растяжении // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2012. № 2(12). С. 174-179.
  16. Фоминых С. О. Упругопластическое состояние толстостенной трубы при взаимодействии различных видов пластической анизотропии // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2011. № 1(9). С. 201-2016.
  17. Петров Н. И. О деформировании растягиваемой полосы, ослабленной пологими выточками // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2014. № 2(20). С. 36-45.
  18. Никитин А. В., Тихонов С. В. Предельное состояние многослойной трансляционноанизотропной толстостенной трубы, находящейся под действием внутреннего давления // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния, 2014. № 1(19). С. 88-94.
  19. Кунташев П. А., Немировский Ю. В. О сходимости метода возмущений в задачах теории упругости // Изв. Акад. наук СССР. Мех. тверд. тела, 1985. № 3. С. 75-78.
  20. Никитенко А. Ф. Ползучесть и длительная прочность металлических материалов. Новосибирск: НГАСУ, 1997. 278 с.
  21. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1979. 744 с.
  22. Москалик А. Д. Анализ напряженно-деформированного состояния толстостенного несоосного цилиндра, находящегося под внутреннем давлением, в условиях установившейся ползучести методом малого параметра / Труды Девятой Всероссийской научной конференции с международным участием / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2013. С. 140-144.
  23. Москалик А. Д. Применение метода возмущений к задаче о несоосной трубе в условиях установившейся ползучести // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 4(33). С. 76-85. doi: 10.14498/vsgtu1290.
  24. Малинин Н. Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 400 с.
  25. Радченко В. П., Саушкин М. Н. Ползучесть и релаксация остаточных напряжений в упрочненных конструкциях. М.: Машиностроение-1, 2005. 226 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».