On the lowest by $x$-variable terms influence on the spectral properties of dirichlet problem for the hyperbolic systems


Cite item

Full Text

Abstract

We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ and for the hyperbolic system with the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ - empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.

About the authors

Olesya V Alexeeva

I. A. Bunin Elets State University

Email: o.v.alexeeva@gmail.com
Dept. of Computational Mathematics and Informatics 28, Kommunarov st., Elets, Lipetskaya obl., 399770, Russian Federation

Vasiliy V Kornienko

I. A. Bunin Elets State University

Email: v_v_kornienko@mail.ru
(Dr. Phys. & Math. Sci.), Head of Dept., Dept. of Computational Mathematics and Informatics. 28, Kommunarov st., Elets, Lipetskaya obl., 399770, Russian Federation

Dmitriy V Kornienko

I. A. Bunin Elets State University

Email: dmkornienko@mail.ru
(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Computational Mathematics and Informatics 28, Kommunarov st., Elets, Lipetskaya obl., 399770, Russian Federation

References

  1. А. А. Дезин, “Смешанные задачи для некоторых симметрических гиперболических систем” // Докл. АН СССР, 1956. Т. 107, № 1. С. 13-16.
  2. А. А. Дезин, “Граничные задачи для некоторых симметричных линейных систем первого порядка” // Матем. сб., 1959. Т. 49(91), № 4. С. 459-484.
  3. А. А. Дезин, “Теоремы существования и единственности решений граничных задач для уравнений с частными производными в функциональных пространствах” // УМН, 1959. Т. 14, № 3(87). С. 21-73.
  4. В. К. Романко, “Смешанные краевые задачи для одной системы уравнений” // Докл. АН СССР, 1986. Т. 286, № 1. С. 47-50.
  5. V. K. Romanko, “Mixed boundary value problems for a system of equations” // Sov. Math., Dokl., 1986. vol. 33, no. 1. pp. 38-41.
  6. А. А. Дезин, Общие вопросы теории граничных задач. М.: Наука, 1980. 208 с.
  7. С. Качмаж, Г. Штейнгауз, Теория ортогональных рядов. М.: Физ.-мат. лит., 1958. 507 с.
  8. Н. Данфорд, Дж. Т. Шварц, Линейные операторы. Т. 1: Общая теория. М.: Иностр. лит-ра, 1962. 895 с.
  9. N. Dunford, J. T. Schwartz, Linear Operators, V. 1, General Theory, New York - London, John Wiley & Sons, 1988, xiv+858 pp.
  10. Корниенко Д. В., “О спектральных задачах для линейных систем дифференциальнооператорных уравнений” // Вестник Елецк. госуд. ун-та им. И. А. Бунина. Сер.: Математика, физика, 2004. № 5. 71-78 с.
  11. Д. В. Корниенко, “Об одной спектральной задаче для двух гиперболических систем уравнений” // Диффер. уравн., 2006. Т. 42, № 1. С. 91-100.
  12. D. V. Kornienko, “On a spectral problem for two hyperbolic systems” // Differ. Equ., 2006. vol. 42, no. 1. pp. 101-111. doi: 10.1134/S0012266106010083.
  13. Д. В. Корниенко, “О спектре задачи Дирихле для систем дифференциально-операторных уравнений” // Диффер. уравн., 2006. Т. 42, № 8. С. 1063-1071.
  14. D. V. Kornienko, “On the spectrum of the Dirichlet problem for systems of operator-differential equations” // Differ. Equ., 2006. vol. 42, no. 8. pp. 1124-1133 doi: 10.1134/S0012266106080076.
  15. А. А. Дезин, “О слабой и сильной иррегулярности” // Диффер. уравн., 1981. Т. 17, № 10. С. 1851-1858.
  16. О. В. Алексеева, “О спектре задачи Дирихле для двух эллиптических систем” // Научные ведомости Белгородcкого государственного университета. Сер.: Математика. Физика, 2010. Т. 17(88), № 20. С. 5-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).