On differential operators an differential equations on torus


Cite item

Full Text

Abstract

In this paper, we consider periodic boundary value problems for a differential equation whose coefficients are trigonometric polynomials. The spaces of generalized functions are constructed, in which the problems considered have solutions, in particular, the solvability space of a periodic analogue of the Mizohata equation is constructed. A periodic analogue and a generalization of the construction of a nonstandard analysis are constructed, containing not only functions, but also functional spaces. As an illustration of the statement that not all constructions on a torus lead to simplification compared to a plane, a periodic analogue of the concept of a hypoelliptic differential operator is considered, where number-theoretic properties are significant. In particular, it turns out that if a polynomial with integer coefficients is irreducible in the rational field, then the corresponding differential operator is hypoelliptic on the torus.

About the authors

Vladimir P Burskii

Moscow Institute of Physics and Technology (State University)

Email: bvp30@mail.ru
Dr. Phys. & Math. Sci.; Professor; Dept. of Higher Mathematics 9, Inststitutskii per., Dolgoprudny, Moscow region, 141700, Russian Federation

References

  1. Bers L., John F., Schechter M. Partial differential equations / Lectures in Applied Mathematics. Providence, R.I.: Amer. Math. Soc., 1979. xiii+343 pp.
  2. Дезин А. А. Общие вопросы теории граничных задач. М.: Наука, 1980. 208 с.
  3. Пташник Б. Й. Некорректные граничные задачи для дифференциальных уравнений с частными производными. Киев: Наук. думка, 1984. 264 с.
  4. Lax P. D. On Cauchy’s problem for hyperbolic equations and the differentiability of elliptic equations // Comm. Pure Appl. Math., 1955. vol. 8, no. 4. pp. 615-633. doi: 10.1002/cpa.3160080411.
  5. Bourbaki N. Elements of mathematics. Topological vector spaces. Berlin: Springer Verlag, 1987. vii+364 pp.
  6. Hörmander L. The analysis of linear partial differential operators. II: Differential operators with constant coefficients / Grundlehren der Mathematischen Wissenschaften. vol. 257. Berlin: Springer Verlag, 1983. viii+391 pp.
  7. Lewy H. An example ol a smooth linear partial differential equation without solution // Ann. Math., 1957. vol. 66, no. 1. pp. 155-158. doi: 10.2307/1970121.
  8. Грушин В. В. Об одном примере дифференциального уравнения без решений // Матем. заметки, 1971. Т. 10, № 2. С. 125-128.
  9. Garabedian P. R. An unsolvable equation // Proc. Amer. Math. Soc., 1970. vol. 25, no. 1. pp. 207-208. doi: 10.1090/s0002-9939-1970-0252809-6.
  10. Mizohata S. Solutions nulles et solution non analytiques // J. Math. Kyoto Univ., 1962. vol. 1, no. 2 pp. 271-302. doi: 10.1215/kjm/1250525061.
  11. Федорюк М. В. Метод перевала. М.: Наука, 1977. 368 с.
  12. Hörmander L. Linear partial differential operators / Die Grundlehren der mathematischen Wissenschaften. vol. 116. Berlin: Springer Verlag, 1963. vii+285 pp.
  13. Бухштаб А. А. Теория чисел. М.: Просвещение, 1966. 384 с.
  14. Davis M. Applied nonstandard analysis / Pure and Applied Mathematics. New York: John Wiley & Sons, 1977. xii+181 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).