On the reconstruction of residual stresses and strains of a plate after shot peening


Cite item

Full Text

Abstract

The subject of this research is a mathematical description of the shape and the stress-strain state of a steel plate subjected to unilateral shot peening, its experimental verification and application of the results for verification of methods for reconstruction of residual stress and strain fields according to experimental data. Such plate is used in manufacturing as a calibrating sample to determine of shot peening duration required for formation of proper compressive tangential stress in the surface layer of the processed product. The method of calibration is convenient and widely applied in different technologies of surface hardening. In that case the source of the residual stresses is plastic strains in surface layer produced by shot peening. For the statement of the problem a plastic strain tensor field is defined up to an arbitrary function. The shape and the stress-strain state of an elastic plate with the surface layer of plastic strains were calculated numerically. The qualitative behavior of numerical solution allowed us to accept the set of hypotheses to find an analytical solution of the spatial problem of elasticity theory and to weaken the boundary conditions. The exact solution has been found analytically. Within the framework of the plane stress state along the thickness and transverse directions, the result exactly corresponds to the Davidenkov-Birger formula connected the tangential residual stress distribution on depth with the function of deflections. An explicit formula for the dependence of the residual (plastic) deformation on the thickness coordinate is obtained. Sources of errors of the received expressions and methods of their correction are analyzed. An experiment has been carried out on the one-sided shot peening of calibration plate made of hardened 65G steel, for which the layer-by-layer etching of the treated surface and the measurement of the flexure of the plate were made (by Davidenkov method). The profiles of residual stresses and strains were reconstructed numerically with reasonable accuracy using the obtained experimental data. The result is applicable to a wide class of problems for elastic bodies with hardened surface layers. It may serve as a base for experimental research of such problems, help to formulate hypotheses and test them by experiment, help to study relation between physical fields in asymptotic case, help to verify applicability of different ways to account residual stresses in numerical solution. The solution found can be used for verification of stress and displacement fields in different cases of preliminarily stressed shell elements in engineering software for calculation of fatigue endurance of different machine parts with hardened surface layer. It also seems to be a reference for the study of surface-hardened bodies with curved free boundary, to which most of the practically important tasks are reduced.

About the authors

Ilya E Keller

Perm National Research Polytechnic University; Institute of Continuous Media Mechanics UB RAS

Email: kie@icmm.ru
Dr. Phys. & Math. Sci.; Associate Professor; Professor, Dept. of Dynamics and Strength of Machines; Researcher, Lab. of Nonlinear Mechanics of Deformable Solids 29, Komsomolsky prospekt, Perm, 614990, Russian Federation; 1, Academician Korolev Street, Perm, 614013, Russian Federation

Victor N Trofimov

Perm National Research Polytechnic University

Email: tvn_perm@mail.ru
Dr. Techn. Sci.; Associate Professor; Professor; Dept. of Dynamics and Strength of Machines 29, Komsomolsky prospekt, Perm, 614990, Russian Federation

Aleksey V Vladykin

Perm Engine Company OJSC

Email: vladykin-av@pmz.ru
Cand. Techn. Sci.; Deputy Chief; Center for Progressive Technologies 93, Komsomolsky prospekt, Perm, 614010, Russian Federation

Viktor V Plyusnin

Perm Engine Company OJSC

Email: dolgih-nv@pmz.ru
Head; Dept. of Physical and Mechanical Research 93, Komsomolsky prospekt, Perm, 614010, Russian Federation

Dmitriy S Petukhov

Perm National Research Polytechnic University; Institute of Continuous Media Mechanics UB RAS

Email: petuhovds@mail.ru
Assistant, Dept. of Dynamics and Strength of Machines; Postgraduate Student, Lab. of Nonlinear Mechanics of Deformable Solids 29, Komsomolsky prospekt, Perm, 614990, Russian Federation; 1, Academician Korolev Street, Perm, 614013, Russian Federation

Ilya V Vindokurov

Perm National Research Polytechnic University

Email: dpmm17@mail.ru
Student; Dept. of Dynamics and Strength of Machines 29, Komsomolsky prospekt, Perm, 614990, Russian Federation

References

  1. Kopp R., Schulz J. Flexible sheet forming technology by double-sided simultaneous shot peen forming // CIRP Annals, 2002. vol. 51, no. 1. pp. 195-198. doi: 10.1016/S0007-8506(07)61498-X.
  2. Dounde A. A., Seemikeri C. Y., Tanpure P. R. Study of shot peening process and their effect on surface properties: A Review // International Journal of Engineering, Business and Enterprise Applications (IJEBEA), 2015. vol. 2, no. 12. pp. 104-107.
  3. Badreddine J., Rouhaud E., Micoulaut M., Remy S. Simulation of shot dynamics for ultrasonic shot peening: Effects of process parameters // International Journal of Mechanical Sciences, 2014. vol. 82. pp. 179-190. doi: 10.1016/j.ijmecsci.2014.03.006.
  4. Liu Yu, Wang L., Wang D. Finite element modeling of ultrasonic surface rolling process // Journal of Materials Processing Technology, 2011. vol. 211, no. 12. pp. 2106-2113. doi: 10.1016/j.jmatprotec.2011.07.009.
  5. Han B., Ju D. Y. Compressive residual stress induced by water cavitation peening: A finite element analysis // Materials and Design, 2009. vol. 30, no. 8. pp. 3325-3332. doi: 10.1016/j.matdes.2008.11.029.
  6. Champaigne J. Shot Peening Overview, 2001. 37 pp., Retrieved from https://www.shotpeener.com/library/pdf/2001012.pdf (February 14, 2018).
  7. Li J. K., Mei Y., Duo W., Renzhi W. Mechanical approach to the residual stress field induced by shot peening // Materials Science and Engineering: A, 1991. vol. 147, no. 2. pp. 167-173. doi: 10.1016/0921-5093(91)90843-C.
  8. Franchim A. S., de Campos V. S., Travessa D. N., de Moura Neto C. Analytical modelling for residual stresses produced by shot peening // Materials and Design, 2009. vol. 30, no. 5. pp. 1556-1560. doi: 10.1016/j.matdes.2008.07.040.
  9. Sherafatnia K., Farrahi G.H., Mahmoudi A.H., Ghasemi A. Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior // Materials Science and Engineering: A, 2016. vol. 657, no. 7. pp. 309-321. doi: 10.1016/j.msea.2016.01.070.
  10. Davis J., Ramulu M. A study of the residual stress induced by shot peening for an isotropic material based on Prager’s yield criterion for combined stresses // Meccanica, 2015. vol. 50, no. 6. pp. 1593-1604. doi: 10.1007/s11012-015-0109-0.
  11. Zimmermann M., Klemenz M., Schulze V. Literature review on shot peening simulation // International Journal of Computational Materials Science and Surface Engineering, 2010. vol. 3, no. 4. pp. 289-310. doi: 10.1504/IJCMSSE.2010.036218.
  12. Rouhaud E., Deslaef D., Lu J., Chaboche J.-L. Modeling of Residual Stress, Shot Peening / Handbook on Residual Stress; eds. Jian Lu. Society of Experimental Mechanics, 2005. pp. 116-148.
  13. Gallitelli D., Boyer V., Gelineau M., Colaitis Y., Rouhaud E., Retraint D., Kubler R., Desvignes M., Barrallier L. Simulation of shot peening: From process parameters to residual stress fields in a structure // Comptes Rendus Mécanique, 2016. vol. 344, no. 4-5. pp. 355-374. doi: 10.1016/j.crme.2016.02.006.
  14. Musinski W. D., McDowell D. L. On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy specimens // International Journal of Mechanical Sciences, 2015. vol. 100. pp. 195-208. doi: 10.1016/j.ijmecsci.2015.06.020.
  15. Bhuvaraghan B., Srinivasan R.M., Maffeo B. Optimization of the fatigue strength of materials due to shot peening: A survey // IJSCS-Mechanics and Applications, 2010. vol. 2, no. 2. pp. 33-63, Retrieved from https://journals.tdl.org/ijscs/index.php/ijscs/article/view/2338/2021 (February 14, 2018).
  16. Purohit R, Verma C.S., Rana R.S., Dwivedi R., Dwivedi S. Simulation of shot peening process // Materials Today: Proceedings, 2017. vol. 4, no. 2 (Part A). pp. 1244-1251. doi: 10.1016/j.matpr.2017.01.144.
  17. Xie L., Wang Ch., Wang L., Wang Zh., Jiang Ch., Lu W., Ji V. Numerical analysis and experimental validation on residual stress distribution of titanium matrix composite after shot peening treatment // Mechanics of Materials, 2016. vol. 99. pp. 2-8. doi: 10.1016/j.mechmat.2016.05.005.
  18. Jebahi M., Gakwaya A., Lévesque J., Mechri O., Ba K. Robust methodology to simulate real shot peening process using discrete-continuum coupling method // International Journal of Mechanical Sciences, 2016. vol. 107. pp. 21-33. doi: 10.1016/j.ijmecsci.2016.01.005.
  19. Биргер И. А. Остаточные напряжения. М.: Машгиз, 1963. 232 с.
  20. Павлов В. Ф., Кирпичёв В. А., Вакулюк В. С. Прогнозирование сопротивления усталости поверхностно упрочненных деталей по остаточным напряжениям. Самара: СНЦ РАН, 2012. 125 с.
  21. Радченко В. П., Саушкин М. Н. Ползучесть и релаксация остаточных напряжений в упрочнённых конструкциях. М.: Машиностроение-1, 2005. 226 с.
  22. Иванов С. И. К определению остаточных напряжений в цилиндре методом колец и полосок / Остаточные напряжения, Вып. 53. Куйбышев: КуАИ, 1971. С. 32-42.
  23. Саушкин М. Н., Радченко В. П., Павлов В. Ф. Метод расчета полей остаточных напряжений и пластических деформаций в цилиндрических образцах с учетом анизотропии процесса поверхностного // ПМТФ, 2011. Т. 52, No 2. С. 173-182.
  24. Захарова Т. П., Розанов М. А., Теплова С. В. Влияние условий эксплуатации на релаксацию остаточных напряжений сжатия в наклепанных пазах хвостовиков лопаток ТВД из жаропрочных монокристаллических никелевых сплавов // Вестник Уфимского государственного авиационного технического университета, 2015. Т. 19, No 3. С. 21-27.
  25. Сазанов В. П., Кирпичев В. А., Вакулюк В. С., Павлов В. Ф. Определение первоначальных деформаций в упрочненном слое цилиндрической детали методом конечно-элементного моделирования с использованием расчетного комплекса PATRAN/NASTRAN // Вестник Уфимского государственного авиационного технического университета, 2015. Т. 19, No 2. С. 35-40.
  26. Сазанов В. П., Семенова О. Ю., Кирпичев В. А., Вакулюк В. С. Математическое моделирование первоначальных деформаций в поверхностно упрочненных деталях при выборе образца-свидетеля // Вестник Уфимского государственного авиационного технического университета, 2016. Т. 20, No 3. С. 31-37.
  27. Саушкин М. Н., Радченко В. П., Куров А. Ю. Метод расчета остаточных напряжений в надрезах с полукруглым профилем в полом поверхностно упрочненном цилиндрическом образце // ПМТФ, 2013. Т. 54, No 4. С. 150-157.
  28. Саушкин М. Н., Куров А. Ю. Анализ напряжённого состояния в надрезах полукруглого профиля после опережающего поверхностного пластического деформирования сплошных цилиндрических образцов // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. No 1(26). С. 133-140. doi: 10.14498/vsgtu1039.
  29. Кузнецов Н. Д., Цейтлин В. И., Волков В. И. Технологические методы повышения надёжности деталей машин: справочник. М.: Машиностроение, 1993. 304 с.
  30. Mattsen R. L., Fonda H. E. Peening Intensity Measurement: Memorandum Report S-200-9C: General Motors, March, 1945. 13 pp.
  31. Лурье А. И. К теории толстых плит // ПММ, 1942. Т. 6, No 2-3. С. 151-168.
  32. Аксентян О. К., Ворович И. И. Напряженное состояние плиты малой толщины // ПММ, 1963. Т. 27, No 6. С. 1057-1074.
  33. Ворович И. И., Малкина О. С. Напряженное состояние толстой плиты // ПММ, 1967. Т. 31, No 2. С. 230-241.
  34. Устинов Ю. А. О структуре погранслоя в слоистых плитах // Докл. АН СССР, 1976. Т. 229, No 2. С. 325-328.
  35. Меркулова Н. С. Контроль остаточных напряжений на установке АПООН (автоматизация процесса определения остаточных напряжений): Производственная инструкция, НИАТ ПИ 1.4.804-84. М.: НИАТ, 1985. 50 с.
  36. Келлер И. Э. Тензорное исчисление. Спб.: Лань, 2012. 176 с.
  37. Koiter W. T. General theorems of elastic-plastic solids / Progress in Solid Mechanics. vol. 1; ed. J. N. Sneddon, R. Hill. Amsterdam: North Holland, 1960. pp. 167-221.
  38. Zarka J., Frelat J., Inglebert G., Kasmai-Navidi P. A New Approach in Inelastic Analysis of Structures. Gif-sur-Yvette, France: CADLM, 1990. 300 pp.
  39. Биргер И. А. Круглые пластинки и оболочки вращения. М.: Оборонгиз, 1961. 368 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).