On a boundary-value problem with Saigo operators for a mixed-type equation


Cite item

Full Text

Abstract

The theory of mixed type equations is one of the most important parts of the theory of partial differential equations. This is due to the fact that equations of mixed type are connected with the problems of the theory of singular integral equations, integral transformations, and special functions. An actual continuation of the research in these fields will be the proof of the unique solvability of the inner-boundary problem. In the hyperbolic part of the domain, a condition is established that relates the generalized derivatives and fractional-order integrals to the Gauss hypergeometric function.

About the authors

Oleg A Repin

Samara State Economic University

Email: matstat@mail.ru
Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Mathematical Statistics and Econometrics 141, Sovetskoy Armii st., Samara, 443090, Russian Federation

References

  1. Saigo M. A remark on integral operators involving the Gauss hypergeometric function // Math. Rep. College General Educ., Kyushu Univ., 1978. vol. 11, no. 2. pp. 135-143.
  2. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  3. Репин О. А. Краевые задачи со смещением для уравнений гиперболического и смешанного типов. Саратов: Саратов. ун-т, 1992. 161 с.
  4. Репин О. А., Кумыкова С. К. Внутреннекраевая задача с операторами Сайго для уравнения Геллерстедта // Дифференц. уравнения, 2013. Т. 49, № 10. С. 1340-1349.
  5. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
  6. Бицадзе А. В. Краевые задачи для эллиптических уравнений второго порядка. М.: Наука, 1966. 203 с.
  7. Смирнов М. М. Уравнения смешанного типа. М.: Наука, 1970. 296 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).