Об эффекте «расщепления» для многоточечных дифференциальных операторов с суммируемым потенциалом


Цитировать

Полный текст

Аннотация

Изучается дифференциальный оператор четвёртого порядка с многоточечными граничными условиями. Потенциал дифференциального оператора является суммируемой функцией на конечном отрезке. При больших значениях спектрального параметра найдена асимптотика решений дифференциального уравнения, задающего дифференциальный оператор. На основе изучения граничных условий выведено уравнение на собственные значения изучаемого оператора. Параметры граничных условий подобраны таким образом, что в главном приближении уравнение на собственные значения имеет кратные корни. Автором показано, что у исследуемого оператора наблюдается эффект «расщепления» кратных в главном приближении собственных значений. Выведены все серии однократных собственных значений изучаемого оператора. Изучена индикаторная диаграмма рассматриваемого оператора. Найдена асимптотика собственных значений во всех секторах индикаторной диаграммы. Полученной точности асимптотических формул достаточно для нахождения асимптотики собственных функций исследуемого дифференциального оператора.

Об авторах

Сергей Иванович Митрохин

Московский государственный университет им. М. В. Ломоносова

Email: mitrokhin-sergey@yandex.ru
кандидат физико-математических наук, доцент; старший научный сотрудник; научно-исследовательский вычислительный центр Россия, 119899, Москва, Воробьёвы горы

Список литературы

  1. Митрохин С. И. О «расщеплении» кратных в главном собственных значений многоточечных краевых задач // Изв. вузов. Матем., 1997. № 3. С. 38-43.
  2. Винокуров В. А., Садовничий В. А. Асимптотика любого порядка собственных значений и собственных функций краевой задачи Штурма-Лиувилля на отрезке с суммируемым потенциалом // Дифференц. уравнения, 1998. Т. 34, № 10. С. 1423-1426.
  3. Винокуров В. А., Садовничий В. А. Асимптотика любого порядка собственных значений и собственных функций краевой задачи Штурма-Лиувилля на отрезке с суммируемым потенциалом // Изв. РАН. Сер. матем., 2000. Т. 64, № 4. С. 47-108. doi: 10.4213/im295.
  4. Митрохин С. И. Асимптотика собственных значений дифференциального оператора четвёртого порядка с суммируемыми коэффициентами // Вестник Московского университета. Сер. Матем., мех., 2009. № 3. С. 14-17.
  5. Митрохин С. И. О спектральных свойствах одного дифференциального оператора с суммируемыми коэффициентами с запаздывающим аргументом // Уфимск. матем. журн., 2011. Т. 3, № 4. С. 95-115.
  6. Ильин В. А. О сходимости разложений по собственным функциям в точках разрыва коэффициентов дифференциального оператора // Матем. заметки, 1977. Т. 22, № 5. С. 679-698.
  7. Будаев В. Д. О безусловной базисности на замкнутом интервале систем собственных и присоединенных функций оператора второго порядка с разрывными коэффициентами // Дифференц. уравнения, 1987. Т. 23, № 6. С. 941-952.
  8. Ильин В. А. Необходимые и достаточные условия базисности Рисса корневых векторов разрывных операторов второго порядка // Дифференц. уравнения, 1986. Т. 22, № 12. С. 2059-2071.
  9. Митрохин С. И. О некоторых спектральных свойствах дифференциальных операторов второго порядка с разрывной весовой функцией // Докл. РАН, 1997. Т. 356, № 1. С. 13-15.
  10. Гуревич А. П., Хромов А. П. Операторы дифференцирования первого и второго порядков со знакопеременной весовой функцией // Матем. заметки, 1994. Т. 56, № 1. С. 3-15.
  11. Лидский В. В., Садовничий В. А. Регуляризованные суммы корней одного класса целых функций // Функц. анализ и его прил., 1967. Т. 1, № 2. С. 52-59.
  12. Митрохин С. И. О спектральных свойствах дифференциальных операторов с разрывными коэффициентами // Дифференц. уравнения, 1992. Т. 28, № 3. С. 530-532.
  13. Лидский В. Б., Садовничий В. А. Асимптотические формулы для корней одного класса целых функций // Матем. сб., 1968. Т. 75(117), № 4. С. 558-566.
  14. Савчук А. М. Регуляризованный след первого порядка оператора Штурма-Лиувилля с δ-потенциалом // УМН, 2000. Т. 55, № 6(336). С. 155-156. doi: 10.4213/rm352.
  15. Савчук А. М., Шкаликов А. А. Операторы Штурма-Лиувилля с сингулярными потенциалами // Матем. заметки, 1999. Т. 66, № 6. С. 897-912. doi: 10.4213/mzm1234.
  16. Наймарк М. А. Линейные дифференциальные операторы. М.: Наука, 1969. 528 с.
  17. Левитан Б. М., Саргсян И. С. Введение в спектральную теорию. Самосопряженные обыкновенные дифференциальные операторы. М.: Наука, 1970. 672 с.
  18. Bellman R., Cooke K. L. Differential-difference equations / Mathematics in Science and Engineering. vol. 6. New York-London: Academic Press, 1963. xvi+462 pp.
  19. Садовничий В. А., Любишкин В. А. О некоторых новых результатах теории регуляризованных следов дифференциальных операторов // Дифференц. уравнения, 1982. Т. 18, № 1. С. 109-116.
  20. Садовничий В. А., Любишкин В. А., Белабасси Ю. О регуляризованных суммах корней целой функции одного класса // Докл. АН СССР, 1980. Т. 254, № 6. С. 1346-1348.
  21. Митрохин С. И. О спектральных свойствах дифференциального оператора Штурма-Лиувилля с запаздывающим аргументом // Вестник Московского университета. Сер. Матем., мех., 2013. № 4. С. 38-42.
  22. Митрохин С. И. О спектральных свойствах дифференциальных операторов нечетного порядка с суммируемым потенциалом // Дифференц. уравнения, 2011. Т. 47, № 12. С. 1808-1811.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».