Necessary optimality conditions of the second oder in a stochastic optimal control problem with delay argument
- Authors: Mastaliyev R.o.1
-
Affiliations:
- Institute of Control Systems, Azerbaijan National Academy of Sciences
- Issue: Vol 20, No 4 (2016)
- Pages: 620-635
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20530
- DOI: https://doi.org/10.14498/vsgtu1506
- ID: 20530
Cite item
Full Text
Abstract
The optimal control problem of nonlinear stochastic systems which mathematical model is given by Ito stochastic differential equation with delay argument is considered. Assuming that the concerned region is open for the control by the first and the second variation (classical sense) of the quality functional we obtain the necessary optimality condition of the first and the second order. In the particular case we receive the stochastic analog of the Legendre-Clebsch condition and some constructively verified conclusions from the second order necessary condition. We investigate the Legendre-Clebsch conditions for the degeneration case and obtain the necessary conditions of optimality for a special control, in the classical sense.
Full Text
##article.viewOnOriginalSite##About the authors
Rashad oglu Mastaliyev
Institute of Control Systems, Azerbaijan National Academy of Sciences
Email: mastaliyevrashad@gmail.com
(Ph.D. (Mathematics); mastaliyevrashad@gmail.com), Leading Researcher, Management in Complex Dynamic Systems Laboratory 9, B. Vahabzade st., Baku, AZ1141, Azerbaijan
References
- Царьков Е. Ф. Случайные возмущения дифференциально-функциональных уравнений. Рига: Зинатне, 1989. 421 с.
- Зайцев В. В., Карлов (младший) А. В., Телегин С. С. ДВ-модель системы “хищник-жертва” // Вестн. СамГУ. Естественнонаучн. сер., 2009. № 6(72). С. 139-148.
- Кульман Н. К., Хаметов В. М. Оптимальная фильтрация в случае косвенного наблюдения диффузионного процесса с запаздывающим аргументом // Пробл. передачи информ., 1978. Т. 14, № 3. С. 55-64.
- Бутковский А. Г. Управление системами с распределенными параметрами (обзор) // Автомат. и телемех., 1979. № 11. С. 16-65.
- Эльсгольц Д. Э. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. М.: Наука, 1964. 128 с.
- Kolmanovskii V. B., Nosov V. R. Stability of functional differential equations. London: Academic Press, 1986. xiv+217 pp.
- Kolmanovskii V. B., Myshkis A. D. Applied Theory of Functional Differential Equations / Mathematics and Its Applications (Soviet Series). vol. 85. Netherlands: Springer, 1992. xv+234 pp. doi: 10.1007/978-94-015-8084-7
- Kolmanovskii V. B., Shaikhet L. E. Control of systems with aftereffect / Translations of mathematical monographs. vol. 157. Providence, RI: American Mathematical Society, 1996. xi+336 pp.
- Митропольский Ю. А., Нгуен Донг Ань Случайные колебания в квазилинейных системах стохастических дифференциальных уравнений с запаздыванием // Укр. мат. ж., 1986. Т. 38, № 2. С. 181-187.
- Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. М.: Наука, 1977. 568 с.
- Рыбаков К. А. Оптимальное управление стохастическими системами при импульсных воздействиях, образующих эрланговские потоки событий // Программные системы: теория и приложения, 2013. Т. 4, № 2. С. 3-20.
- Гихман И. И., Скороход А. В. Стохастические дифференциальные уравнения и их приложения. Киев: Наука думка, 1982. 612 с.
- Тригуб М. В. Синтез управления нелинейными стохастическими системами // Автомат. и телемех., 2001. № 2. С. 101-111.
- Леваков А. А. Стохастические дифференциальные уравнения. Минск: БГУ, 2009. 231 с.
- Agayeva C. A., Abushov Q. U. The maximum principle for some nonlinear stochastic control system with variable structure // Theory Stoch. Process., 2010. vol. 16(32), no. 1. pp. 1-11.
- Aghayeva C. A. Second order necessary condition of optimality for time lag stochastic systems / 24th Mini EURO Conference on Continuous Optimization and InformationBased Technologies in the Financial Sector (MEC EurOPT 2010) (June 23-26, 2010, Izmir, Turkey). Vilnius: Vilnius Gediminas Technical University Publishing House “Technika”. pp. 94-99, Retrieved from http://leidykla.vgtu.lt/conferences/MEC_EurOPT_2010/003/0001.html (November 08, 2016).
- Махмудов Н. И., Агаева Ч. А. Необходимые условия оптимальности для стохастических систем управления с запаздывающим аргументом: Деп. в ВИНИТИ 28 марта 1990 г., № 2291-2390, 1990. 19 с.
- Аюкасов Р. А. Синтез алгоритма оптимального управления стохастическими динамическими системами с запаздыванием // Мехатроника, автоматизация, управление, 2009. № 5. С. 8-11.
- Габасов Р., Кириллова Ф. М. Качественная теория оптимальных процессов. М.: Наука, 1971. 507 с.
- Мансимов К. Б. Особые управления в системах с запаздыванием. Баку: Элм, 1999. 176 с.
- Марданов М. Дж., Мансимов К. Б., Меликов Т. К. Исследование особых управлений и необходимые условия оптимальности второго порядка в системах с запаздыванием. Баку: Элм, 2013. 356 с.
- Харатишвили Г. Л., Тадумадзе Т. А. Нелинейные оптимальные системы управления с переменными запаздываниями // Матем. сб., 1978. Т. 107(149), № 4(12). С. 613-633.
- Милюткин В. П. Принцип максимума для задач с запаздыванием с фиксированным временем и свободным правым концом траектории // Автомат. и телемех., 1968. № 6. С. 37-45.
- Габасов Р., Кириллова Ф. М. Принцип максимума в теории оптимального управления. Мн.: Наука и техника, 1974. 274 с.
- Габасов Р., Кириллова Ф. М. Особые оптимальные управления. М.: Наука, 1973. 256 с.
- Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управление. М.: Наука, 1979. 432 с.
- Иоффе А. Д., Тихомиров В. М. Теория экстремальных задач. М.: Наука, 1974. 479 с.
- Мордухович Б. Ш. Методы аппроксимации в задачах оптимизации и управления. М.: Наука, 1988. 359 с.
Supplementary files

