The nonlocal problem for a hyperbolic equation with bessel operator in a rectangular domain
- Authors: Zaitseva N.V1
-
Affiliations:
- Kazan (Volga Region) Federal University
- Issue: Vol 20, No 4 (2016)
- Pages: 589-602
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20525
- DOI: https://doi.org/10.14498/vsgtu1501
- ID: 20525
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Natalya V Zaitseva
Kazan (Volga Region) Federal University
Email: n.v.zaiceva@yandex.ru
(Assistant), Dept. of Higher Mathematics and Mathematical Modeling 18, Kremlyovskaya str., Kazan, 420008, Russian Federation
References
- Киприянов И. А. Сингулярные эллиптические краевые задачи. М.: Физматлит, 1997. 208 с.
- Пулькин С. П. Избранные труды. Самара: Универс групп, 2007. 264 с.
- Пулькин С. П. О единственности решения сингулярной задачи Геллерстедта // Изв. вузов. Матем., 1960. № 6. С. 214-225.
- Сабитов К. Б., Ильясов Р. Р. О некорректности краевых задач для одного класса гиперболических уравнений // Изв. вузов. Матем., 2001. № 5. С. 59-63.
- Сабитов К. Б., Ильясов Р. Р. Решение задачи Трикоми для уравнения смешанного типа с сингулярным коэффициентом спектральным методом // Изв. вузов. Матем., 2004. № 2. С. 64-71.
- Cannon J. R. The solution of heat equation subject to the specification of energy // Quart. Appl. Math, 1963. vol. 21, no. 2. pp. 155-160. doi: 10.1090/qam/160437.
- Камынин Л. И. Об одной краевой задаче теории теплопроводности с неклассическими граничными условиями // Ж. вычисл. матем. и матем. физ., 1964. Т. 4, № 6. С. 1006-1024.
- Ионкин Н. И. Решение одной краевой задачи теории теплопроводности с неклассическим краевым условием // Дифференц. уравнения, 1977. Т. 13, № 2. С. 294-304.
- Пулькина Л. С. Нелокальная задача с интегральными условиями для гиперболического уравнения // Дифференц. уравнения, 2004. Т. 40, № 7. С. 887-892.
- Пулькина Л. С. Краевые задачи для гиперболического уравнения с нелокальными условиями I и II рода // Изв. вузов. Матем., 2012. № 4. С. 74-83.
- Пулькина Л. С. Задачи с неклассическими условиями для гиперболических уравнений. Самара: Самарский университет, 2012. 194 с.
- Бенуар Нур-Эддин, Юрчук Н. И. Смешанная задача с интегральным условием для параболических уравнений с оператором Бесселя // Дифференц. уравнения, 1991. Т. 27, № 12. С. 2094-2098.
- Beilin S. A. Existence of solutions for one-dimensional wave equations with nonlocal conditions // Electronic Journal of Differential Equations, 2001. vol. 2001, no. 76. pp. 1-8, http://ejde.math.txstate.edu/Volumes/2001/76/abstr.html.
- Mesloub S., Bouziani A., Kechkar N. A strong solution of an envolution problem with integral condition // Georgian Mathematical Journal, 2002. vol. 9, no. 1. pp. 149-159. doi: 10.1515/GMJ.2002.149.
- Сабитова Ю. К. Нелокальные начально-граничные задачи для вырождающегося гиперболического уравнения // Изв. вузов. Матем., 2009. № 12. С. 49-58.
- Сабитов К. Б. Краевая задача для уравнения параболо-гиперболического типа с нелокальным интегральным условием // Дифференц. уравнения, 2010. Т. 46, № 10. С. 1468-1478.
- Сабитов К. Б. Нелокальная задача для уравнения параболо-гиперболического типа в прямоугольной области // Матем. заметки, 2011. Т. 89, № 4. С. 596-602. doi: 10.4213/mzm8462.
- Сабитова Ю. К. Краевая задача с нелокальным интегральным условием для уравнений смешанного типа с вырождением на переходной линии // Матем. заметки, 2015. Т. 98, № 3. С. 393-406. doi: 10.4213/mzm9135.
- Сабитов К. Б. Уравнения математической физики. М.: Физматлит, 2013. 352 с.
- Zaitseva N. V. Keldysh type problem for B-hyperbolic equation with integral boundary value condition of the first kind // Lobachevskii J. Math., 2017. vol. 38, no. 1 (to appear).
- Олвер Ф. Введение в асимптотические методы и специальные функции. М.: Мир, 1986. 381 с.
- Сабитов К. Б., Вагапова Э. В. Задача Дирихле для уравнения смешанного типа с двумя линиями вырождения в прямоугольной области // Дифференц. уравнения, 2013. Т. 49, № 1. С. 68-78.
- Сафина Р. М. Задача Келдыша для уравнения смешанного типа второго рода с оператором Бесселя // Дифференц. уравнения, 2015. Т. 51, № 10. С. 1354-1366.
Supplementary files
