The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves
- Authors: Khokhlov A.V1
-
Affiliations:
- Lomonosov Moscow State University, Institute of Mechanics
- Issue: Vol 21, No 1 (2017)
- Pages: 160-179
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20524
- DOI: https://doi.org/10.14498/vsgtu1524
- ID: 20524
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Andrew V Khokhlov
Lomonosov Moscow State University, Institute of Mechanics
Email: andrey-khokhlov@ya.ru
Cand. Techn. Sci.; Senior Researcher; Lab. of Elasticity and Plasticity 1, Michurinsky prospekt, Moscow, 119192, Russian Federation
References
- Хохлов А. В. Свойства семейства диаграмм деформирования с постоянной скоростью нагружения, порождаемых нелинейной моделью вязкоупругопластичности типа Максвелла // Машиностроение и инженерное образование, 2017. № 1. С. 14-28.
- Хохлов А. В. Свойства нелинейной модели вязкоупругопластичности типа Максвелла с двумя материальными функциями // Вестник Московского университета. Сер. 1. Математика, механика, 2016. № 6. С. 36-41.
- Хохлов А. В. Нелинейная модель вязкоупругопластичности типа Максвелла: свойства кривых ползучести при ступенчатых нагружениях и условия накопления пластической деформации // Машиностроение и инженерное образование, 2016. № 3. С. 35-48.
- Хохлов А. В. Кривые длительной прочности нелинейной модели вязкоупругопластичности типа Максвелла и правило суммирования поврежденности при ступенчатых нагружениях // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. Т. 20, № 3. С. 524-543. doi: 10.14498/vsgtu1512.
- Ильюшин А. А., Огибалов П. М. Некоторое обобщение моделей Фойгта и Максвелла // Механика полимеров, 1966. № 2. С. 190-196.
- Городцов В. А., Леонов А. И. О кинематике, неравновесной термодинамике и реологических соотношениях в нелинейной теории вязкоупругости // ПММ, 1968. Т. 32, № 1. С. 70-94.
- Leonov A. I., Lipkina E. Ch., Paskhin E. D., Prokunin A. N. Theoretical and experimental investigations of shearing in elastic polymer liquids // Rheol. Acta, 1976. vol. 15, no. 7/8. pp. 411-426. doi: 10.1007/BF01574496.
- Пальмов В. А. Реологические модели в нелинейной механике деформируемых тел // Успехи механики, 1980. Т. 3, № 3. С. 75-115.
- Прокунин А. Н. О нелинейных определяющих соотношениях максвелловского типа для описания движения полимерных жидкостей // ПММ, 1984. Т. 48, № 6. С. 957-965.
- Larson R. G. Constitutive Equations for Polymer Melts and Solutions. Boston: Butterworth, 1988. doi: 10.1016/c2013-0-04284-3.
- Leonov A. I. Analysis of simple constitutive equations for viscoelastic liquids // Journal of Non-Newtonian Fluid Mechanics, 1992. vol. 42, no. 3. pp. 323-350. doi: 10.1016/0377-0257(92)87017-6.
- Leonov A. I., Prokunin A. N. Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids. London: Chapman and Hall, 1994. xvii+475 pp. doi: 10.1007/978-94-011-1258-1.
- Leonov A. I. Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data // Rheology Series, 1999. vol. 8. pp. 519-575. doi: 10.1016/S0169-3107(99)80040-9.
- Kremple E., Ho K. Inelastic Compressible and Incompressible, Isotropic, Small Strain Viscoplasticity Theory Based on Overstress (VBO) / Handbook of Materials Behavior Models. New York: Academic Press, 2001. pp. 336-348. doi: 10.1016/b978-012443341-0/50037-5.
- Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- Малинин Н. Н. Расчеты на ползучесть элементов машиностроительных конструкций. М.: Машиностроение, 1981. 221 с.
- Betten J. Creep Mechanics. Berlin, Heidelberg: Springer-Verlag, 2008. xiii+353 pp. doi: 10.1007/b138749.
- Локощенко А. М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 504 с.
- Васин Р. А., Еникеев Ф. У. Введение в механику сверхпластичности. Уфа: Гилем, 1998. 280 с.
- Nieh T. G., Wadsworth J., Sherby O. D. Superplasticity in metals and ceramics / Cambridge Solid State Science Series. Cambridge: Cambridge University Press, 1997. xiv+273 pp. doi: 10.1017/CBO9780511525230.
- Segal V. M., Beyerlein I. J., Tome C. N., Chuvil’deev V. N., Kopylov V. I. Fundamentals and Engineering of Severe Plastic Deformation. New York: Nova Science Pub. Inc., 2010. 542 pp.
- Cao Y. Determination of the creep exponent of a power-law creep solid using indentation tests // Mech. Time-Depend. Mater., 2007. vol. 11, no. 2. pp. 159-172. doi: 10.1007/s11043-007-9033-6.
- Naumenko K., Altenbach H., Gorash Y. Creep Analysis with a Stress Range Dependent Constitutive Model // Arch. Appl. Mech., 2009. vol. 79, no. 6. pp. 619-630. doi: 10.1007/s00419-008-0287-5.
- Радченко В. П. Об одной структурной реологической модели нелинейно-упругого материала // Прикладная механика, 1990. Т. 26, № 6. С. 67-74.
- Радченко В. П., Шапиевский Д. В. Анализ нелинейной обобщенной модели Максвелла // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2005. № 38. С. 55-64. doi: 10.14498/vsgtu372.
- Радченко В. П., Шапиевский Д. В. О дрейфе упругой деформации для нелинейноупругих материалов вследствие ползучести // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2006. № 43. С. 99-105. doi: 10.14498/vsgtu458.
- Радченко В. П., Шапиевский Д. В. Математическая модель ползучести микронеоднородного нелинейно-упругого материала // ПМТФ, 2008. Т. 49, № 3. С. 157-163.
- Радченко В. П., Андреева Е. А. О дрейфе и эффекте памяти нелинейно-упругой деформации вследствие ползучести для микронеоднородных материалов в условиях одноосного напряженного состояния // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2009. № 2(19). С. 72-77. doi: 10.14498/vsgtu712.
- Хохлов А. В. Определяющее соотношение для реологических процессов: свойства теоретических кривых ползучести и моделирование затухания памяти // Известия РАН. МТТ, 2007. № 2. С. 147-166.
- Хохлов А. В. Определяющее соотношение для реологических процессов c известной историей нагружения. Кривые ползучести и длительной прочности // Изв. РАН. МТТ, 2008. № 2. С. 140-160.
- Хохлов А. В. Качественный анализ общих свойств теоретических кривых линейного определяющего соотношения вязкоупругости // Наука и образование (МГТУ им. Н. Э. Баумана) (электронный журнал), 2016. № 5. С. 187-245. doi: 10.7463/0516.0840650.
- Шестериков С. А., Локощенко А. М. Ползучесть и длительная прочность металлов / Итоги науки и техники. Сер. Мех. деформируем. тверд. тела, Т. 13. М.: ВИНИТИ, 1980. С. 3-104.
- Радченко В. П., Самарин Ю. П. Влияние ползучести на величину упругой деформации слоистого композита // Механика композитных материалов, 1983. Т. 19, № 2. С. 231-237.
- Кнетс И. В., Вилкс Ю. К. Ползучесть компактной костной ткани человека при растяжении // Механика полимеров, 1975. Т. 11, № 4. С. 634-638.
- Мелнис А. Э., Лайзан Я. Б. Нелинейная ползучесть компактной костной ткани человека при растяжении // Механика полимеров, 1978. Т. 14, № 1. С. 97-100.
- Dandrea J., Lakes R. S. Creep and creep recovery of cast aluminum alloys // Mech. TimeDepend. Mater., 2009. vol. 13, no. 4. pp. 303-315. doi: 10.1007/s11043-009-9089-6.
- Хохлов А. В. Кривые ползучести и релаксации нелинейного определяющего соотношения Ю. Н. Работнова для вязкоупругопластичных материалов // Проблемы прочности и пластичности, 2016. Т. 78, № 4. С. 452-466.
- Работнов Ю. Н. Некоторые вопросы теории ползучести // Вестник МГУ, 1948. № 10. С. 81-91.
- Ильюшин А. А., Победря Б. Е. Основы математической теории термовязкоупругости. М.: Наука, 1970. 280 с.
- Виноградов Г. В., Малкин А. Я. Реология полимеров. М.: Химия, 1977. 440 с.
- Коларов Д., Балтов А., Бончева Н. Механика пластических сред. М.: Мир, 1979. 304 с.
- Кайбышев О. А. Сверхпластичность промышленных сплавов. М.: Металлургия, 1984. 264 с.
- Brinson H. F., Brinson L. C. Polymer Engineering Science and Viscoelasticity. Berlin: Springer Science, 2008. xvi+446 pp. doi: 10.1007/978-0-387-73861-1.
- Bergstrom J. S. Mechanics of Solid Polymers. Theory and Computational Modeling. Amsterdam: William Andrew is an imprint of Elsevier, 2015. xiv+509 pp. doi: 10.1016/c2013-0-15493-1.
- Lin Y. C., Chen X.-M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working // Materials and Design, 2011. vol. 32, no. 4. pp. 1733-1759. doi: 10.1016/j.matdes.2010.11.048.
- Lee W.-S., Lin C.-R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures // Cryogenics, 2016. vol. 79. pp. 26-34. doi: 10. 1016/j.cryogenics.2016.07.007.
Supplementary files
