On decisions of Schwartz' problem for J-analytic functions with the same Jordan basis of real and imaginary parts of J-matrix


Cite item

Full Text

Abstract

Boundary Schwartz' problem for J-analytic functions was studied within this scientific work. These functions are solutions of linear complex system of partial differential equations of the first order. It was considered, that the real and imaginary parts of J-matrix are put into triangular form by means of one and the same complex transformation. The main theorem proved a criterion for eigenvalues of J-matrix. Shall this criterion be fulfilled within the complex plane within the boundaries defined by Lyapunov line, there is a decision on Schwartz' problem and it is the only one. The equal form of this criterion was found, which in many cases is more convenient for check. While proving the theorem, known facts about boundary properties of λ-holomorphic functions are applied. The proof itself is based on the method of direct and reverse reduction of Schwarz' problem to Dirichlet’s problem for real valued elliptic systems of partial differential equations of the second order. Examples of matrices are given, whereby the specified criterion is fulfilled.

About the authors

Vladimir G Nikolaev

Novgorod State University after Yaroslav the Wise

Email: vg14@inbox.ru
(Cand. Phys. & Math. Sci.; vg14@inbox.ru), Associate Professor, Dept. of Algebra and Geometry 41, Bol'shaya St. Petersburgskaya st., Novgorod the Great, 173003, Russian Federation

References

  1. Солдатов А. П. Задача Шварца для функций, аналитических по Дуглису // Совр. математика и ее приложения, 2010. Т. 67, Уравнения с частными производными. С. 99-102.
  2. Николаев В. Г., Солдатов А. П. О решении задачи Шварца для J-аналитических функций в областях, ограниченных контуром Ляпунова // Диффер. уравн., 2015. № 7. С. 965-969.
  3. Солдатов А. П. Интегральное представление функций, аналитических по Дуглису // Вестн. СамГУ. Естественнонаучн. сер., 2008. № 8/1(67). С. 225-234.
  4. Солдатов А. П. Гипераналитические функции и их приложения // Совр. математика и ее приложения, 2004. Т. 15, Теория функций. С. 142-199.
  5. Солдатов А. П. Пространство Харди решений эллиптических систем первого порядка // Докл. РАН, 2007. Т. 416, № 1. С. 26-30.
  6. Солдатов А. П. Эллиптические системы высокого порядка // Диффер. уравн., 1989. Т. 25, № 1. С. 136-142.
  7. Бицадзе А. В. О единственности решения задачи Дирихле для эллиптических уравнений с частными производными // УМН, 1948. Т. 3, № 6(28). С. 211-212.
  8. Бицадзе А. В. Основы теории аналитических функций комплексного переменного. М.: Наука, 1972. 347 с.
  9. Бицадзе А. В. Краевые задачи для эллиптических уравнений второго порядка. М.: Наука, 1966. 298 с.
  10. Боярский Б. В. Теория обобщенного аналитического вектора // Annales Polonici Mathematici, 1965. Т. 17, № 3. С. 281-320, https://eudml.org/doc/265098.
  11. Векуа И. Н. Обобщенные аналитические функции. М.: Наука, 1988. 328 с.
  12. Жура Н. А. Краевые задачи типа Бицадзе-Самарского для эллиптических в смысле Дуглиса-Ниренберга систем // Диффер. уравн., 1992. Т. 28, № 1. С. 81-91.
  13. Жура Н. А. Общая краевая задача для эллиптических в смысле Дуглиса-Ниренберга систем в областях с гладкой границей // Изв. РАН, 1994. № 1. С. 22-44.
  14. Мусхелишвили Н. И. Сингулярные интегральные уравнения. Граничные задачи теории функций и некоторые их приложения к математической физике. М.: Наука, 1968. 511 с.
  15. Николаев В. Г. О некоторых свойствах J-аналитических функций // Вестн. СамГУ. Естественнонаучн. сер., 2013. № 3(104). С. 25-32.
  16. Николаев В. Г., Панов Е. Ю. Результаты о совпадении λ- и µ-голоморфных функций на границе области и их приложения к краевым задачам / Проблемы математического анализа: Межвузовский международный сборник, Вып. 74; ред. Н. Н. Уральцева. Новосибирск: Тамара Рожковская, 2013. С. 123-132.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».