A non-local problem for a loaded mixed-type equation with a integral operator


Cite item

Full Text

Abstract

We study the existence and uniqueness of the solution of non-local boundary value problem for the loaded elliptic-hyperbolic equation $$ u_{xx} + \mathop{\mathrm{sgn}} (y) u_{yy} + \frac{1 - \mathop{\mathrm{sgn}} (y)}{2} \sum\limits_{k = 1}^n {R_k}(x, u(x, 0)) = 0 $$ with integral operator $$ {R_k}\bigl(x, u(x, 0)\bigr) = \left\{ \begin{array}{lc} {p_k}(x)D_{x\,\,1}^{ - {\alpha _k}}u(x, 0), & q \le x \le 1,\\[2mm] {r_k}(x)D_{ - 1\,x}^{ - {\beta _k}}u(x, 0), & - 1 \le x \le - q, \end{array} \right. $$ where $$ \begin{array}{l} \displaystyle D_{ax}^{ - {\alpha _k}}f(x) = \frac{1}{{\Gamma ({\alpha _k})}} \int _a^x \frac{f(t)}{(x - t)^{1-{\alpha _k} }}dt, \\ \displaystyle D_{xb}^{ - {\beta _k}}f(x) = \frac{1}{{\Gamma ({\beta _k})}} \int _x^b \frac{f(t)}{(t - x)^{1-{\beta _k}}}dt , \end{array} $$ in double-connected domain $\Omega $, bounded with two lines: $$ \sigma _1:~x^2 + y^2 = 1,\quad \sigma _2:~ x^2 + y^2 = q^2 \quad \text{at $y > 0$,}$$ and characteristics: $$ A_j C_1:~ x + ( - 1)^j y = ( - 1)^{j + 1},\quad B_j C_2:~x + ( - 1)^j y = ( - 1)^{j + 1} \cdot q$$ of the considered equation at $y < 0$, where $0 < q < 1$, $j = 1, 2$; $A_1 ( 1; 0),$ $A_2( - 1; 0)$, $B_1(q; 0)$, $B_2( - q; 0)$, $C_1(0; - 1)$, $C_2(0; - q)$, $\beta _k$, $\alpha _k > 0$. Uniqueness of the solution of investigated problem was proved by an extremum principle for the mixed type equations. Thus we need to prove that, the loaded part of the equation is identically equal to zero if considerate problem is homogeneous. Existence of the solution of the problem was proved by a method of the integral equations, thus the theory of the singular integral equations and Fredholm integral equations of the second kind were widely used.

About the authors

Obidjon Kh Abdullayev

National University of Uzbekistan named after Mirzo Ulugbek

Email: obidjon.mth@gmail.com
Cand. Phys. & Math. Sci.; obidjon.mth@gmail.com), Associate Professor, Dept. of Differential Equations and Mathematical Physics VUZ Gorodok, Tashkent, 100125, Uzbekistan

References

  1. Нахушев А. М. О задаче Дарбу для одного вырождающегося нагруженного интегро-дифференциального уравнения второго порядка // Диффер. уравн., 1976. Т. 12, № 1. С. 103-108.
  2. Нахушев А. М. Нагруженные уравнения и их приложения // Диффер. уравн., 1983. Т. 19, № 1. С. 86-94.
  3. Нахушев А. М. Нагруженные уравнения и их применения. М.: Наука, 2012. 233 с.
  4. Елеев В. А. О некоторых краевых задачах для смешанно-нагруженных уравнений второго и третьего порядка // Диффер. уравн., 1994. Т. 30, № 2. С. 230-236.
  5. Дзарахохов А. В., Елеев В. А. Об одной нелокальной краевой задаче для нагруженного уравнения третьего порядка // Владикавк. матем. журн., 2004. Т. 6, № 3. С. 36-46.
  6. Казиев В. М. О задаче Дарбу для одного нагруженного интегро-дифференциального уравнения второго порядка // Диффер. уравн., 1978. Т. 14, № 1. С. 181-184.
  7. Казиев В. М. Задача Гурса для одного нагруженного интегро-дифференциального уравнения // Диффер. уравн., 1981. Т. 17, № 2. С. 313-319.
  8. Ланин И. Н. Краевая задача для одного нагруженного гиперболо-параболического уравнения третьего порядка // Диффер. уравн., 1981. Т. 17, № 1. С. 97-106.
  9. Исломов Б. И., Курьязов Д. М. Об одной краевой задаче для нагруженного уравнения второго порядка // ДАН РУз, 1996. № 1-2. С. 3-6.
  10. Курьязов Д. М. Краевая задача для нагруженного уравнения смешанного типа с двумя линиями вырождения // УзМЖ, 1999. № 5. С. 40-46.
  11. Рамазанов М. И. О нелокальной задаче для нагруженного гиперболо-эллиптического уравнения в прямоугольной области // Математический журнал. Алматы, 2002. Т. 2, № 4. С. 75-81.
  12. Хубиев К. У. Об одной краевой задаче для нагруженного уравнения смешанного гиперболо-параболического типа // Доклады Адыгской (Черкесской) Международной академии наук, 2005. Т. 7, № 2. С. 74-77.
  13. Сабитов К. Б., Мелишева Е. П. Задача Дирихле для нагруженного уравнения смешанного типа в прямоугольной области // Изв. вузов. Матем., 2013. № 7. С. 62-76.
  14. Сабитов К. Б. Начально-граничная задача для параболо-гиперболического уравнения с нагруженными слагаемыми // Изв. вузов. Матем., 2015. № 6. С. 31-42.
  15. Мелишева Е. П. Задача Дирихле для нагруженного уравнения Лаврентьева-Бицадзе // Вестн. СамГУ. Естественнонаучн. сер. , 2010. № 6(80). С. 39-47.
  16. Abdullayev O. Kh. About a method of research of the non-local problem for the loaded mixed type equation in double-connected domain // Bulletin KRASEC. Phys. & Math. Sci., 2014. vol. 9, no. 2. pp. 3-12. doi: 10.18454/2313-0156-2014-9-2-3-12.
  17. Абдуллаев О. Х. Краевая задача для нагруженного уравнения эллиптикогиперболического типа в двусвязной области // Вестник КРАУНЦ. Физ.-мат. науки, 2014. № 1(8). С. 33-48. doi: 10.18454/2079-6641-2014-8-1-33-48.
  18. Исломов Б. И., Абдуллаев О. Х. Краевая задача типа задачи Бицадзе для уравнения третьего порядка эллиптико-гиперболического типа в двусвязной области // Доклады Адыгской (Черкесской) Международной академии наук, 2004. Т. 7, № 1. С. 42-46.
  19. Бицадзе А. В. Краевые задачи эллиптических уравнений второго порядка. М.: Наука, 1966. 203 с.
  20. Мусхелишвили Н. И. Сингулярные интегральные уравнения. Граничные задачи теории функций и некоторые их приложения к математической физике. М.: Наука, 1968. 513 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).