An aeroelastic stability of the circular cylindrical shells containing a flowing fluid


Cite item

Full Text

Abstract

The paper is concerned with the analysis of the panel flutter of circular cylindrical shells containing an ideal compressible liquid and subjected to the external supersonic gas flow. The aerodynamic pressure is calculated based on the quasi-static aerodynamic theory. The behavior of the liquid is described in the framework of the potential theory. Using the Bubnov- Galerkin method, the corresponding wave equation together with the impermeability condition and specified boundary conditions are transformed into the system of equations. The classical shell theory based on the Kirchhoff-Love hypotheses and the principle of virtual displacements are used as the mathematical framework for the elastic structure dynamic problem. A solution to the problem is searched for by a semi-analytical version of the finite element method and involves the calculation of the complex eigenvalues of the coupled system of equations using the Muller-based iterative algorithm. The reliability of the obtained numerical solution of the aeroelastic and hydroelastic stability problem has been estimated by comparing it with the available theoretical data. For shells with different dimensions and variants of boundary conditions the numerical experiments have been performed to estimate the influence of velocity of the internal liquid flow on the value of static pressure in the unperturbed gas flow, which is taken as a variable parameter. It has been found that a growth of liquid velocity causes a change in the flutter type of stability loss. It has been shown that with increase of linear dimensions of the shell the stabilizing effect of the internal liquid flow extending the boundaries of aeroelastic stability changes to the destabilizing effect. Specific values of geometrical dimensions determining the variation in the character of dynamic behavior of the system depend on the prescribed combination of boundary conditions.

About the authors

Sergey A Bochkarev

Institute of Continuous Media Mechanics, Ural Branch of RAS

Email: bochkarev@icmm.ru
(Cand. Phys. & Math. Sci.; bochkarev@icmm.ru; Corresponding Author), Senior Researcher, Dept. of Complex Problems of Mechanics of Deformable Bodies 1, Akad. Korolyova st., Perm, 614013, Russian Federation

Sergey V Lekomtsev

Institute of Continuous Media Mechanics, Ural Branch of RAS

Email: lekomtsev@icmm.ru
(Cand. Phys. & Math. Sci.; lekomtsev@icmm.ru), Researcher, Dept. of Complex Problems of Mechanics of Deformable Bodies. 1, Akad. Korolyova st., Perm, 614013, Russian Federation

References

  1. Новичков Ю. Н. Флаттер пластин и оболочек / Итоги науки и техники. Механика деформируемого твердого тела, Т. 11. М.: ВИНИТИ, 1978. С. 67-122.
  2. Bismarck-Nasr M. N. Finite element analysis of aeroelasticity of plates and shells // Appl. Mech. Rev., 1992. vol. 45, no. 12. pp. 461-482. doi: 10.1115/1.3119783.
  3. Païdoussis M. P. Fluid-structure Interactions: Slender Structures and Axial Flow. Vol. 2. London: Academic Press, 2003. 1040 pp.
  4. Bochkarev S. A., Matveenko V. P. Specific features of dynamic behavior of stationary and rotating singlecoaxial cylindrical shells interacting with the axial and rotational fluid flows // J. Vib. Acoust., 2015. vol. 137, no. 2, 021001. doi: 10.1115/1.4028829.
  5. Païıdoussis M. P., Chan S. P., Misra A. K. Dynamics and stability of coaxial cylindrical shells containing flowing fluid // J. Sound Vib., 1984. vol. 97, no. 2. pp. 201-235. doi: 10. 1016/0022-460X(84)90319-5.
  6. Païdoussis M. P., Nguyen V. B., Misra A. K. A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid // J. Fluids Struct., 1991. vol. 5, no. 2. pp. 127-164. doi: 10.1016/0889-9746(91)90454-W.
  7. Бочкарёв С. А., Матвеенко В. П. Динамическое поведение упругих коаксиальных цилиндрических оболочек, содержащих движущуюся в них жидкость // ПММ, 2010. Т. 74, № 4. С. 655-666.
  8. Бочкарёв С. А., Лекомцев С. В. Исследование влияния граничных условий на устойчивость коаксиальных цилиндрических оболочек, взаимодействующих с текущей жидкостью // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки., 2012. № 3(28). С. 88-101. doi: 10.14498/vsgtu1051.
  9. Chiu E. K.-Y., Farhat C. Effects of fuel slosh on flutter prediction, 50th AIAA/ASME/ASCE/AHS/ASC/ Structures, Structural Dynamics, and Materials Conference, 2009, AIAA Paper 2009-2682-377. doi: 10.2514/6.2009-2682.
  10. Farhat C., Chiu E. K.-Y., Amsallem D., Schottó J.-S., Ohayon R. Modeling of fuel sloshing and its physical effects on flutter // AIAA J., 2013. vol. 51, no. 9. pp. 2252-2265. doi: 10.2514/1.J052299.
  11. Sabri F., Lakis A. A. Hybrid finite element method applied to supersonic flutter of an empty or partially liquid-filled truncated conical shell // J. Sound Vib., 2010. vol. 329, no. 3. pp. 302-316. doi: 10.1016/j.jsv.2009.09.023.
  12. Sabri F., Lakis A. A. Effects of sloshing on flutter prediction of liquid-filled circular cylindrical shell // J. Aircr., 2011. vol. 48, no. 6. pp. 1829-1839. doi: 10.2514/1.C031071.
  13. Noorian M., Haddadpour H., Firouz-Abadi R. Investigation of panel flutter under the effect of liquid sloshing // J. Aerosp. Eng., 2015. vol. 28, no. 2, 04014059. doi: 10.1061/(ASCE)AS.1943-5525.0000384.
  14. Бидерман В. Л. Механика тонкостенных конструкций. М.: Машиностроение, 1977. 488 с.
  15. Voss H. M. The effect of an external supersonic flow on the vibration characteristics of thin cylindrical shells // J. Aerospase Sci., 1961. vol. 28, no. 12. pp. 945-956. doi: 10.2514/8.9264.
  16. Бочкарёв С. А., Матвеенко В. П. Решение задачи о панельном флаттере оболочечных конструкций методом конечных элементов // Матем. моделирование, 2002. Т. 14, № 12. С. 55-71.
  17. Вольмир А. С. Оболочки в потоке жидкости и газа. Задачи гидроупругости. М.: Наука, 1979. 320 с.
  18. Бочкарёв С. А., Матвеенко В. П. Численное исследование влияния граничных условий на динамику поведения цилиндрической оболочки с протекающей жидкостью // Изв. РАН. МТТ, 2008. № 3. С. 189-199.
  19. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 544 с.
  20. Shivakumar K. N., Krishna Murty A. V. A high precision ring element for vibrations of laminated shells // J. Sound Vib., 1978. vol. 58, no. 3. pp. 311-318. doi: 10.1016/S0022-460X(78)80040-6.
  21. Матвеенко В. П. Об одном алгоритме решения задачи о собственных колебаниях упругих тел методом конечных элементов / Краевые задачи теории упругости и вязкоупругости. Свердловск: УНЦ АН СССР, 1980. С. 20-24.
  22. Матвеенко В. П., Севодин М. А., Севодина Н. В. Приложения метода Мюллера и принципа аргумента к задачам на собственные значения в механике деформируемого твердого тела // Вычисл. мех. сплош. сред., 2014. № 3. С. 331-336. doi: 10.7242/1999-6691/2014.7.3.32.
  23. Olson M. D., Fung Y. C. Comparing theory and experiment for the supersonic flutter of circular cylindrical shells // AIAA J., 1967. vol. 5, no. 10. pp. 1849-1856. doi: 10.2514/3.4315.
  24. Carter L. L., Stearman R. O. Some aspects of cylindrical shell panel flutter // AIAA J., 1968. vol. 6, no. 1. pp. 37-43. doi: 10.2514/3.4438.
  25. Ganapathi M., Varadan T. K., Jijen J. Field-consistent element applied to flutter analysis of circular cylindrical shells // J. Sound Vib., 1994. vol. 171, no. 4. pp. 509-527. doi: 10.1006/jsvi.1994.1137.
  26. Sabri F., Lakis A. A. Finite element method applied to supersonic flutter of circular cylindrical shells // AIAA J., 2010. vol. 48, no. 1. pp. 73-81. doi: 10.2514/1.39580.
  27. Weaver D. S., Unny T. E. On the dynamic stability of fluid-conveying pipes // J. Appl. Mech., 1973. vol. 40, no. 1. pp. 48-52. doi: 10.1115/1.3422971.
  28. Selmane A., Lakis A. A. Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid // J. Fluids Struct., 1997. vol. 11, no. 1. pp. 111-134. doi: 10.1006/jfls.1996.0069.
  29. Kochupillai J., Ganesan N., Padmanabhan C. A semi-analytical coupled finite element formulation for shells conveying fluids // Comp. Struct., 2002. vol. 80, no. 3-4. pp. 271-286.doi: 10.1016/S0045-7949(02)00008-1.
  30. Amabili M., Garziera R. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: Shells containing or immersed in axial flow // J. Fluids Struct., 2002. vol. 16, no. 1. pp. 31-51. doi: 10.1006/jfls.2001.0402.
  31. Uğurlu B., Ergin A. A hydroelastic investigation of circular cylindrical shells-containing flowing fluid with different end conditions // J. Sound Vib., 2008. vol. 318, no. 4-5. pp. 1291-1312. doi: 10.1016/j.jsv.2008.05.006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).