An internal boundary value problem with the Riemann-Liouville operator for the mixed type equation of the third order


Cite item

Full Text

Abstract

The unique solvability of the internal boundary value problem is investigated for the mixed type equation of the third order with Riemann-Liouville operators in boundary condition. The uniqueness theorem is proved for the different orders of operators of fractional integro-differentiation when the inequality constraints on the known functions exist. The existence of solution is verified by the method of reduction to Fredholm equations of the second kind, which unconditional solvability follows from the uniqueness of the solution of the problem.

About the authors

Oleg A Repin

Samara State Economic University

Email: matstat@mail.ru
(Dr. Phys. & Math. Sci., Professor; matstat@mail.ru; Corresponding Author), Head of Department, Dept. of Mathematical Statistics and Econometrics 141, Sovetskoy Armii st., Samara, 443090, Russian Federation

Svetlana K Kumykova

Kabardino-Balkarian State University

Email: bsk@rect.kbsu.ru
(Cand. Phys. & Math. Sci.; bsk@rect.kbsu.ru), Associate Professor, Dept. of Mathematical Analysis and Theory of Functions 173, Chernyshevskogo st., Nalchik, 360004, Russian Federation

References

  1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  2. Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
  3. Нахушев А. М. Задачи со смещением для уравнений в частных производных. М.: Наука, 2006. 287 с.
  4. Репин О. А., Кумыкова С. К. Нелокальная задача для уравнения смешанного типа, порядок которого вырождается вдоль линии изменения типа // Изв. вузов. Матем., 2013. № 8. С. 57-65.
  5. Репин О. А., Кумыкова С. К. Об одной нелокальной задаче для уравнения смешанного типа третьего порядка с кратными характеристиками // Дифференц. Уравнения, 2015. Т. 51, № 6. С. 755-763. doi: 10.1134/S0374064115060072.
  6. Репин О. А., Кумыкова С. К. Задача со смещением для уравнения третьего порядка с разрывными коэффициентами // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 4(29). С. 17-25. doi: 10.14498/vsgtu1123.
  7. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
  8. Кумыкова С. К. Об одной задаче с нелокальными краевыми условиями на характеристиках для уравнения смешанного типа // Дифференц. уравнения, 1974. Т. 10, № 1. С. 78-88.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».