A similar for ∆1 problem for the second order hyperbolic equation in the 3D euclidean space


Cite item

Full Text

Abstract

The second-order hyperbolic type equation is considered in the 3D Euclidean space. Boundary value problem is posed in the infinite cylindrical region bounded by the characteristic surfaces of this equation with data on the related characteristic surfaces of the equation and with conditions mates on the internal non-descriptive plane. The solution is also assumed to be zero when z → ∞ with derivative by variable z. By the Fourier transform method the problem reduced to the corresponding planar problem ∆1 for hyperbolic equation, which in characteristic coordinates is the generalized Euler-Darboux equation with a negative parameter. Authors obtained estimates of the plane problem solution and its partial derivatives up to the second order inclusive. This, in turn, provided an opportunity to impose the conditions to given boundary functions ensuring the existence of a classical solution of the problem in the form of the Fourier transform.

About the authors

Irina N Rodionova

Samara State Aerospace University

(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Mathematics & Business Informatics 34, Moskovskoye sh., Samara, 443086, Russian Federation

Vyacheslav M Dolgopolov

Samara State Aerospace University

Email: paskal1940@mail.ru
(Cand. Phys. & Math. Sci.; paskal1940@mail.ru; Corresponding Author), Associate Professor, Dept. of Mathematics & Business Informatics 34, Moskovskoye sh., Samara, 443086, Russian Federation

References

  1. Бицадзе А. В. К проблеме уравнений смешанного типа в многомерных областях // ДАН СССР, 1956. Т. 110, № 6. С. 901-902.
  2. Нахушев А. М. Об одном трехмерном аналоге задачи Геллерстедта // Дифференц. уравнения, 1968. Т. 4, № 1. С. 52-62.
  3. Пулькин С. П. К вопросу о постановке задачи Трикоми в пространстве // Ученые записки Куйб. пед. ин-та, 1956. № 14. С. 63-77.
  4. Долгополов В. М., Долгополов М. В., Родионова И. Н. Построение специальных классов решений некоторых дифференциальных уравнений гиперболического типа // Докл. РАН, 2009. Т. 429, № 5. С. 583-589.
  5. Долгополов В. М., Родионова И. Н. Задачи для уравнений гиперболического типа на плоскости и в трехмерном пространстве с условиями сопряжения на характеристике // Изв. РАН. Сер. матем., 2011. Т. 75, № 4. С. 21-28. doi: 10.4213/im4117.
  6. Долгополов В. М., Родионова И. Н. Экстремальные свойства решений специальных классов одного уравнения гиперболического типа // Матем. заметки, 2012. Т. 92, № 4. С. 533-540. doi: 10.4213/mzm8900.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).