The oscillator's model with broken symmetry
- Authors: Volov D.B1
-
Affiliations:
- Samara State Transport University
- Issue: Vol 19, No 4 (2015)
- Pages: 624-633
- Section: Articles
- URL: https://journals.rcsi.science/1991-8615/article/view/20445
- DOI: https://doi.org/10.14498/vsgtu1379
- ID: 20445
Cite item
Full Text
Abstract
The equations of the oscillator motion are considered. The exact solutions are given in the form of exponents with an additional parameter that characterizes the asymmetry of the oscillations. It is shown that these equations are the special case of the Hill’s equation. The equations for the three types of exponents, including having the property of unitarity are obtained. Lagrangians and Hamiltonians are found for these equations. It is proved that all the equations are associated by canonical transformations and essentially are the same single equation, expressed in different generalized coordinates and momenta. Moreover, the solutions of linear homogeneous equations of the same type are both solutions of inhomogeneous linear equations of another one. A quantization possibility of such systems is discussed.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry B Volov
Samara State Transport University
Email: volovdm@mail.ru
(Dr. Tech. Sci.; volovdm@mail.ru), Professor, Dept. of Physics and Chemistry 18, First Bezimyanniy per., Samara, 443066, Russian Federation
References
- Волов Д. Б. Модель осциллятора с нарушением симметрии / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 110-111.
- Magnus W., Winkler S. Hill’s Equation / Interscience Tracts in Pure and Applied Mathematics. vol. 20. New York, London, Sydney: Interscience Publ., 1966. viii+127 pp.
- Varrió S. A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium // Laser Phys. Lett., 2014. vol. 11, no. 1, 016001. doi: 10.1088/1612-2011/11/1/016001.
- Takara M., Toyoshima M., Seto H., Hoshino Y., Miura Y. Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application // Polym. Chem., 2014. vol. 5, no. 3. pp. 931-939. doi: 10.1039/c3py01001e.
- Vázquez C., Collado J., Fridman L. Super twisting control of a parametrically excited a overhead crane // Journal of the Franklin Institute, 2014. vol. 351, no. 4. pp. 2283-2298. doi: 10.1016/j.jfranklin.2013.02.011.
- Lei H., Xu B. High-order analytical solutions around triangular libration points in the circular restricted three-body problem // Monthly Notices of the Royal Astronomical Society, 2013. vol. 434, no. 2. pp. 1376-1386. doi: 10.1093/mnras/stt1099.
- Волов Д. Б. Некоторые уравнения на основе одномерных хаотических динамик // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 1(30). С. 334-342. doi: 10.14498/vsgtu1175.
- Волов Д. Б. Об унитарности битриальных операторов в явном виде обобщенного уравнения // Вестник СамГУПС, 2013. № 4. С. 107-112.
- Magnus K., Popp K., Sextro W. Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen [Oscillations. Physical foundations and mathematical treatment of oscillations]. Wiesbaden: Springer Vieweg, 2013, xi+298 pp. doi: 10.1007/978-3-8348-2575-9.
- Ландау Л. Д., Лифшиц Е. М. Глава 5. Малые колебания / Теоретическая физика. Т. 1, Механика. М.: Наука, 1988. С. 78-125.
- Давыдов А. С. Теория твердого тела. М.: Наука, 1976. 639 с.
Supplementary files

