Bioengineered brain-computer interfaces: an introductory overview of technologies, clinical applications and ethical-legal challenges

Cover Page

Cite item

Full Text

Abstract

Bioengineered brain-computer interfaces (BBCIs) constitute a rapidly evolving interdisciplinary field at the intersection of neuroscience, bioengineering, materials science, and artificial intelligence. This introductory overview provides a concise synthesis of the current state of research across key domains: invasive, minimally invasive, and non-invasive platforms; emerging technologies (biohybrid interfaces, nanowire probes, in vitro neuromuscular models); clinical applications in neurorehabilitation and communication; and ethical-legal challenges - from neuroprivacy to cognitive rights. Special attention is given to regional development strategies, including the human-centered approach of the Russian scientific community. The review does not claim to offer a comprehensive analysis but aims to delineate conceptual boundaries and establish an informational foundation for forthcoming thematic publications focused on in-depth comparative assessments, regulatory modeling, and strategic priorities for clinical translation of BBCIs.

About the authors

A. U. Zammoev

Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: zammoev@mail.ru
ORCID iD: 0000-0002-7966-3557
SPIN-code: 6317-3115

Candidate of Technical Sciences, Head of the Scientific-Innovation Center "Biomedical Engineering"

Russian Federation, 2, Balkarov street, Nalchik, 360010, Russia

R. N. Abutalipov

Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: bnt_nat_2016@mail.ru
ORCID iD: 0000-0002-0187-563X
SPIN-code: 6219-9432

Candidate of Technical Sciences, Senior Researcher of the Laboratory "Bionanorobotics and Neuroengineering" of the Scientific-Innovation Center "Biomedical engineering"

Russian Federation, 2, Balkarov street, Nalchik, 360010, Russia

References

  1. Musk E., Neuralink. An integrated brain-machine interface platform with thousands of channels. Journal of medical Internet research. 2019. Vol. 21. No. 10. P. e16194. doi: 10.2196/16194
  2. Goding J.A., Gilmour A., Ulises Alejandro Aregueta Robles, Hasan E. Living bioelectronics: strategies for developing an effective long‐term implant with functional neural connections. Advanced Functional Materials. 2018. Vol. 28. No. 12. P. 1702969.
  3. Filipova I.A. Neurotechnologies: development, practical application, and legal regulation. Vestnik of Saint Petersburg University. Law. 2021. Vol. 12. No. 3. Pp. 502–521. doi: 10.21638/spbu14.2021.302. EDN: GVISZL. (In Russian)
  4. Abutalipov R.N., Zammoev A.U., Nagoev Z.V. Bionanorobotics: conceptualization, perspective and research problems. News of the Kabardino-Balkarian Scientific Center of RAS. 2016. No. 6(74). Pp. 11–17. EDN: XRUYRN. (In Russian)
  5. Abutalipov R.N., Zammoev A.U., Zagazhezheva O.Z. Interreprezentative network (IRN) and representativeness VR visualization of nanostructures and processes in nano-medium. News of the Kabardino-Balkarian Scientific Center of RAS. 2016. No. 4(72). Pp. 5–9. EDN: WKDXXD. (In Russian)
  6. Abutalipov R.N., Zammoev A.U., Anchekov M.I. Perspectives of application of micro and nanosystem equipment in biology and medical diagnostics. Problems and tasks of LoC (Laboratories on the Chip) // News of the Kabardino-Balkarian Scientific Center of RAS. 2016. No. 6(74). Pp. 5–10. EDN: XRUYRD. (In Russian)
  7. Abutalipov R.N., Zammoev A.U. Information service for decision-making support system in the process of designing devices of bionanorobotics. News of the Kabardino-Balkarian Scientific Center of RAS. 2017. No. 6-2(80). Pp. 9–12. EDN: YWNDNP. (In Russian)
  8. Zammoev A.U., Abutalipov R.N. Search, research and development of bionanorobotics technologies for the sustainable development of mountain territories in the new techno-economic paradigm. Sustainable Development of Mountainous Regions. 2018. Vol. 10. No. 3(37). Pp. 447–457. doi: 10.21177/1998-4502-2018-3-447-457. EDN: YOHKLJ. (In Russian)
  9. Zammoev A.U., Abutalipov R.N. Catalytic self-propelled nanomotors as the basis of the element base for the design of nanomechatronic devices and systems for bionanomachines in bionanorobotics. News of the Kabardino-Balkarian Scientific Center of RAS. 2018. No. 6-2(86). Pp. 149–156. EDN: YZKELR. (In Russian)
  10. Abutalipov R.N., Zammoev A.U. About the possible prospects of the application of magnetotactic bacteria in bionanorobotics. Advanced Systems and Control Problems: Proceedings of the XIV All-Russian Scientific and Practical Conference and X Youth School-Seminar “Information Control and Processing in Technical Systems”; Southern Federal University. Rostov-on-Don; Taganrog: Southern Federal University Publishing House, 2019. Pp. 200–205. ISBN: 978-5-9275-3146-2. (In Russian)
  11. Zammoev A.U., Abutalipov R.N. Search for methods and study of the possibilities of using modern technologies of virtual prototyping and design of bioengineering systems in the design of bionanodevices and systems of bionanorobotics. News of the Kabardino-Balkarian Scientific Center of RAS. 2020. No. 6(98). Pp. 34–42. doi: 10.35330/1991-6639-2020-6-98-34-42. EDN: JNLSCR. (In Russian)
  12. Zammoev A.U., Abutalipov R.N. On the possibilities and necessity of applying bioengineering devices and systems of bionanorobotics and biorobotics to address practical medicine challenges. Fundamental Science for Practical Medicine. Additive Technologies, Advanced Materials and Physical Methods in Medicine. Current Issues: Proceedings of the II International Scientific and Practical Conference, Nalchik, September 15–18, 2021. Nalchik: Print Tsentr, 2021. Pp. 17–18. EDN: OVYATY. (In Russian)
  13. Zammoev A.U., Abutalipov R.N. Soft polymer mechatronic structures for implementing a bio-integrated approach in soft robotics and biorobotics. Advanced Systems and Control Problems: Proceedings of the XVII All-Russian Scientific and Practical Conference and XIII Youth School-Seminar, Dombai, April 4–8, 2022. Taganrog: M.R. Maruk Publishing House, 2022. Pp. 302–313. EDN: RULOPE. (In Russian)
  14. Abutalipov R.N., Zammoev A.U., Chernyshev G.V. Search for theoretical approaches to the study of cyber-physical systems and environments with intelligent control. News of the Kabardino-Balkarian Scientific Center of RAS. 2024. Vol. 26. No. 6. Pp. 26–44. doi: 10.35330/1991-6639-2024-26-6-26-44. EDN: CCVAZY. (In Russian)
  15. Hochberg L.R., Serruya M., Friehs G.M., Mukand J.A. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006. Vol. 442. No. 7099. Pp. 164–171. doi: 10.1038/nature04970
  16. Bjånes D.A. et al. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956–2246 days // medRxiv. 2024.
  17. Sahasrabuddhe K., Khan A.A., Singh A.P. et al. The Argo: a high channel count recording system for neural recording in vivo. Journal of neural engineering. 2021. Vol. 18. No. 1. P. 015002. doi: 10.1088/1741-2552/abd0ce
  18. Mitchell P., Lee S.C.M., Yoo P.E. et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the stent rode with thought-controlled digital switch (SWITCH) study. JAMA neurology. 2023. Vol. 80. No. 3. Pp. 270–278. doi: 10.1001/jamaneurol.2022.4847
  19. Badcock N.A. et al. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ. 2015. Vol. 3. P. e907.
  20. Ban H.Y. et al. Kernel Flow: a high channel count scalable time-domain functional near-infrared spectroscopy system. Journal of biomedical optics. 2022. Vol. 27. No. 7. P. 074710.
  21. Mokiienko O.A., Lyukmanov R.Kh., Bobrov P.D. et al. Neurocomputer interfaces based on near-infrared spectroscopy and electroencephalography in post-stroke rehabilitation: a comparative study. Neurology, Neuropsychiatry, Psychosomatics. 2024. Vol. 16. No. 5. Pp. 17–23. doi: 10.14412/2074-2711-2024-5-17-23. (In Russian)
  22. Pratt E.J. et al. Kernel Flux: a whole-head 432-magnetometer optically-pumped magnetoencephalography (OP-MEG) system for brain activity imaging during natural human experiences. Optical and Quantum Sensing and Precision Metrology. SPIE, 2021. Vol. 11700. Pp. 162–179.
  23. Thwe Y., Maneetham D., Crisnapati P.N. Review of applications in wheelchair control using Emotiv insight and Emotiv Epoc headsets. 2024 6th international conference on cybernetics and intelligent system (ICORIS). IEEE, 2024. Pp. 1–6.
  24. Jiang Y., Huang Q., Li Y. Application strategies of brain-computer interface in education from the perspective of innovation diffusion theory. Brain-Apparatus Communication: A Journal of Bacomics. 2024. Vol. 3. No. 1. P. 2376368.
  25. Lupu R.G. et al. BCI and FES based therapy for stroke rehabilitation using VR facilities. Wireless Communications and Mobile Computing. 2018. Vol. 2018. No. 1. P. 4798359.
  26. Zhang A. et al. Nanowire probes could drive high-resolution brain-machine interfaces. Nano Today. 2020. Vol. 31. P. 100821.
  27. Leng Y. et al. Advances in in vitro models of neuromuscular junction: focusing on organ‐on‐a‐chip, organoids, and biohybrid robotics. Advanced Materials. 2023. Vol. 35. No. 41. P. 2211059.
  28. Frank J.A., Antonini M.J., Anikeeva P. Next-generation interfaces for studying neural function. Nature biotechnology. 2019. Vol. 37. No. 9. Pp. 1013–1023.
  29. Willett F.R. et al. A high-performance speech neuroprosthesis. Nature. 2023. Vol. 620. No. 7976. Pp. 1031–1036.
  30. Willsey M.S. et al. A high-performance brain–computer interface for finger decoding and quadcopter game control in an individual with paralysis. Nature Medicine. 2025. Vol. 31. No. 1. Pp. 96–104.
  31. Cervera M. A. et al. Brain‐computer interfaces for post‐stroke motor rehabilitation: a meta‐analysis. Annals of clinical and translational neurology. 2018. Vol. 5. No. 5. Pp. 651–663.
  32. Ramirez J.G. et al. Intracortical recordings reveal the neuronal selectivity for bodies and body parts in the human visual cortex. Proceedings of the National Academy of Sciences. 2024. Vol. 121. No. 51. P. e2408871121.
  33. Patent No. 2736710 C1 Russian Federation, IPC A61B 5/0476, A61B 5/16. System and method for determining fatigue or alertness state based on eeg biometric signal: Application No. 2020107543; filed February 19, 2020; published November 19, 2020 / A.N. Makarov, A.A. Makarov, S.M. Goryushko [et al.]; applicant: Limited Liability Company “Laboratoriya Znaniy” (Knowledge Lab LLC). EDN: LFGGRP. (In Russian)
  34. Patent No. 2736711 C1 Russian Federation, IPC A61B 5/0476, A61B 5/16. System and method for determining stress state based on EEG biometric signal: Application No. 2020107542; filed February 19, 2020; published November 19, 2020 / A.N. Makarov, A.A. Makarov, S.M. Goryushko et al.; applicant: LLC “Laboratoriya Znaniy” (Knowledge Lab LLC). EDN: WBOYEF. (In Russian)
  35. Patent No. 2813807 C1 Russian Federation, IPC A61H 1/00, A61N 1/36, A61H 39/00. Method for multimodal correction of motor and cognitive impairments in patients after ischemic stroke: Application No. 2023105046; filed March 6, 2023; published February 19, 2024 / E.V. Kostenko, L.V. Petrova, I.V. Pogonchenkova et al.; applicant: Moscow City State Autonomous Healthcare Institution "Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine of the Moscow Department of Healthcare". (In Russian)
  36. Patent No. 2844844 C1 Russian Federation, IPC A61H 1/00, A61N 1/00. Method for restoring upper limb movements after ischemic stroke using combined electromyostimulation and bimanual robotic mechanotherapy with brain–computer interface technology: filed July 4, 2024; published August 7, 2025 / E.V. Kostenko, I.V. Pogonchenkova, L.V. Petrova et al.; applicant: State Autonomous Healthcare Institution of the City of Moscow “S.I. Spasokukotsky Moscow Scientific and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine of the Moscow Department of Healthcare.” (In Russian)
  37. Owen A.M., Coleman M.R. Detecting awareness in the vegetative state. Annals of the New York Academy of Sciences. 2008. Vol. 1129. No. 1. Pp. 130–138. doi: 10.1196/annals.1417.018
  38. Monti M.M., Vanhaudenhuyse A., Coleman M.R. et al. Willful modulation of brain activity in disorders of consciousness. New England journal of medicine. 2010. Vol. 362. No. 7. Pp. 579–589. doi: 10.1056/NEJMoa0905370
  39. Yuste R., Goering S., Arcas B.A.Y. et al. Four ethical priorities for neurotechnologies and AI. Nature. 2017. Vol. 551. No. 7679. Pp. 159–163. doi: 10.1038/551159a
  40. Ienca M., Andorno R. Towards new human rights in the age of neuroscience and neurotechnology. Life sciences, society and policy. 2017. Vol. 13. No. 1. P. 5. doi: 10.1186/s40504-017-0050-1
  41. Oxley T.J., Deo D.R., Cernera S. et al. The ‘Brussels 4’: essential requirements for implantable brain–computer interface user autonomy. Journal of Neural Engineering. 2025. Vol. 22. No. 1. P. 013002. doi: 10.1088/1741-2552/ada0e6
  42. Oxley T.J., Opie N.L., John S.E. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nature Biotechnology. 2016. Vol. 34. No. 3. Pp. 320–327. doi: 10.1038/nbt.3428
  43. Oxley T.J. A 10-year journey towards clinical translation of an implantable endovascular BCI. J Neural Eng. 2025. Vol. 22. P. 013001. doi: 10.1088/1741-2552/ad9633
  44. Ienca M., Valle G., Raspopovic S. Clinical trials for implantable neural prostheses: understanding the ethical and technical requirements. The Lancet Digital Health. 2025. Vol. 7. No. 3. P. e216-e224. doi: 10.1016/S2589-7500(24)00222-X
  45. Lavazza A., Balconi M., Marcello Ienca, Minerva F. Neuralink’s brain-computer interfaces: medical innovations and ethical challenges. Frontiers in Human Dynamics. 2025. Vol. 7. P. 1553905. doi: 10.3389/fhumd.2025.1553905
  46. Ligthart S., Marcello Ienca, Meynen G. et al. Minding rights: Mapping ethical and legal foundations of ‘neurorights’. Cambridge Quarterly of Healthcare Ethics. 2023. Vol. 32. No. 4. Pp. 461–481. doi: 10.1017/S0963180123000245
  47. Alkhouri K.I. Neuralink’s Brain-computer interfaces and the reshaping of religious-psychological experience. Conatus-Journal of Philosophy. 2025. Vol. 10. No. 1. Pp. 9–56. doi: 10.12681/cjp.38734
  48. Chen X., Wang F., Kooijmans R. et al. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys. Journal of Neural Engineering. 2023. Vol. 20. No. 3. P. 036039. doi: 10.1088/1741-2552/ace07e
  49. Rapoport B.I., Kedzierski J.T., Sarpeshkar R.A glucose fuel cell for implantable brain–machine interfaces. PloS one. 2012. Vol. 7. No. 6. P. e38436. doi: 10.1371/journal.pone.0038436
  50. Karpowicz B.M., Ali Ya.H., Wimalasena L.N. et al. Stabilizing brain-computer interfaces through alignment of latent dynamics. Nature Communications. 2025. Vol. 16. No. 1. P. 4662. doi: 10.1038/s41467-025-59652-y
  51. Pun T.K., Khoshnevis M., Hosman T. et al. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. Communications Biology. 2024. Vol. 7. No. 1. P. 1363. doi: 10.1038/s42003-024-06784-4
  52. DARPA. Next-generation nonsurgical neurotechnology (n3) program: broad agency announcement (baa) HR001118S0067. Arlington, VA: Defense Advanced Research Projects Agency, 2018. 42 p.
  53. Karpov O.E., Andrikov D.A., Maksimenko V.A., Khramov A.E. Transparent artificial intelligence for medicine. Medical Doctor and IT. 2022. No. 2. Pp. 4–11. doi: 10.25881/18110193_2022_2_4. EDN: DTCAWX. (In Russian)
  54. Ageev A.I., Loginov E.L., Shkuta A.A. Neurocontrol: Convergent integration of the human brain and artificial intelligence. Economic Strategies. 2020. Vol. 22. No. 6(172). Pp. 46–57. doi: 10.33917/es-6.172.2020.46-57. EDN: XGPRFE. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zammoev A.U., Abutalipov R.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».