Mixed boundary value problem for one discontinuously loaded parabolic equation

Cover Page

Cite item

Full Text

Abstract

This article is devoted to current issues in the theory of partial differential equations related to the study of boundary value problems for loaded parabolic equations with a fractional integro-differen- tiation operator, which are of interest not only for the advancement of this specific theory, but also for their numerous applications.

Aim. The study is to prove the unique solvability of a mixed boundary value problem for a discontinuously loaded parabolic equation with the Riemann–Liouville fractional derivative.

Research methods. The study employs the Green's function method, simple layer potential theory, and fractional calculus theory.

Results. This paper demonstrates the unique solvability of a mixed boundary value problem for a loaded fractional-order parabolic equation.

Conclusion. The results obtained are significant for the development of the theory of boundary value problems for partial differential equations of fractional order, including loaded parabolic equations; they are also relevant for mathematical modeling of various processes and systems with distributed parameters and fractal structures.

About the authors

Mukhamed M. Karmokov

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: mkarmokov@yandex.ru
ORCID iD: 0000-0001-5189-6538
SPIN-code: 1771-6984

Candidate of Physics and Mathematics, Associate Professor, Department of Applied Mathematics and Computer Science

Russian Federation, 173, Chernyshevsky street, Nalchik, 360004, Russia

Marat A. Kerefov

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: kerefov@mail.ru
ORCID iD: 0000-0002-7442-5402
SPIN-code: 1424-6720

Candidate of Physics and Mathematics, Associate Professor, Department of Applied Mathematics and Computer Science

Russian Federation, 173, Chernyshevsky street, Nalchik, 360004, Russia

Sakinat Kh. Gekkieva

Institute of Applied Mathematics and Automation - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: gekkieva_s@mail.ru
ORCID iD: 0000-0002-2135-2115
SPIN-code: 6711-3471

Candidate of Physical and Mathematical Sciences, Leading Researcher, Department of Computational Methods

Russian Federation, 89 A, Shortanov street, Nalchik, 360000, Russia

References

  1. Nakhushev A.M. Nagruzhennye uravneniya i ih primenenie [Loaded equations and their application]. Moscow: Nauka, 2012. 232 p. EDN: RPBPQZ. (In Russian)
  2. Nakhushev A.M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications]. Moscow: Fizmatlit, 2003. 272 p. EDN: UGLEPD. (In Russian)
  3. Nakhushev A.M. On the Darboux problem for a degenerate loaded second-order integro- differential equation. Differential Equations. 1976. Vol. 12. No. 1. Pp. 103–108. EDN: PDBUJB. (In Russian)
  4. Dikinov Kh.B., Kerefov A.A., Nakhushev A.M. On a boundary value problem for a loaded heat conduction equation. Differential Equations. 1976. Vol. 12. No. 1. Pp. 177–179. EDN: PBDAVT. (In Russian)
  5. Pskhu A.V. Uravneniya v chastnyh proizvodnyh drobnogo poryadka [Fractional-order partial differential equations]. Moscow: Nauka, 2005. 199 p. EDN: QJPLZX. (In Russian)
  6. Известия Кабардино-Балкарского научного центра РАН Том 27 № 6 2025 21 Karmokov M.M., Nakhusheva F.M., Abregov M.Kh. Boundary value problem for loaded parabolic equations of fractional order. News of the Kabardino-Balkarian Scientific Center of RAS. Vol. 26. No. 1. Pp. 69–77. doi: 10.35330/1991-6639-2024-26-1-69-77. (In Russian)
  7. Karmokov M.M., Nakhusheva F.M., Gekkieva S.Kh. Boundary value problems for discontinuously loaded parabolic equations. Vestnik of Samara University. Natural Science Series. 2024. Vol. 30. No. 4. Pp. 7–17. doi: 10.18287/2541-7525-2024-30-4-7-17. (In Russian)
  8. Gekkieva S.Kh., Kerefov M.A. Mixed boundary value problems for a loaded equation with a fractional derivative. Nelokal'nye kraevye zadachi i rodstvennye problemy matematicheskoy biologii, informatiki i fiziki: materialy III Mezhdunarodnoy konferencii [Nonlocal boundary value problems and related problems in Mathematical Biology, Computer Science, and Physics: materials of the III International Conference]. Nalchik, 2006. EDN: QKREBL. (In Russian)
  9. Kozhanov A.I. A non-local in time boundary value problem for linear parabolic equations. Sibirskii Zhurnal Industrial'noi Matematiki. 2004. Vol. 7. No. 1(17). Pp. 51–60. EDN: HZOGQL. (In Russian)
  10. Kozhanov A.I. On the solvability of an edge problem with a non-local boundary condition for linear parabolic equations. Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2004. No. 30. Pp. 63–69. EDN: HKZXBD. (In Russian)
  11. Gekkieva S.Kh. Mixed boundary value problems for a loaded diffusion-wave equation. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika [Scientific Bulletin of Belgorod State University. Series: Mathematics. Physics]. 2016. No. 6(227). Pp. 32–35. EDN: VUUBKR. (In Russian)
  12. Gekkieva S.Kh. Boundary value problem for a generalized transport equation with a fractional derivative in a semi-infinite domain. Sovremennye metody v teorii kraevyh zadach. Materialy Voronezhskoy vesenney matematicheskoy shkoly “Pontryaginskie chteniya-XIII” [Modern methods in the theory of boundary value problems. Proceedings of the Voronezh Spring Mathematical School "Pontryagin Readings-XIII"]. Voronezh: VGU, 2002. P. 37. EDN: VNGVYT. (In Russian)
  13. Beilin A.B., Bogatov A.V., Pulkina L.S. A problem with non-local conditions for a one-dimensional parabolic equation. Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2022. Vol. 26. No. Pp. 380–395. doi: 10.14498/vsgtu1904. (In Russian)
  14. Kozhanov A.I., Ashurova G.R. Parabolic equations with degeneracy and unknown coefficient. Mathematical Notes of NEFU. 2024. Vol. 31. No. 1. Pp. 56–69. doi: 10.25587/2411-9326-2024-1-56-69.
  15. Bogatov A.V., Pulkina L.S. Solvability of the inverse coefficient problem with integral redefinition for a one-dimensional parabolic equation. Vestnik of Samara University. Natural Science Series. 2022. Vol. 28, No. 3-4. Pp. 7–17. doi: 10.18287/2541-7525-2022-28-3-4-7-17.
  16. Fridman A. Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa [Parabolic partial differential equations]. Moscow: Mir, 1968. 427 p. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Karmokov M.M., Kerefov M.A., Gekkieva S.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).