Comparative analysis of class imbalance reduction methods in building machine learning models in the financial sector

Cover Page

Cite item

Full Text

Abstract

Borrower default prediction is a pressing issue that underlies the financial stability of credit institutions.

Aim. This study is to develop and evaluate an integrated borrower default prediction method.

Materials and methods. The study was conducted by simulating the integrated borrower default prediction method, analyzing and comparing the results with the baseline AI model, and drawing conclusions.

Results. Based on the analysis of dependencies, an integrated borrower default prediction methods developed and calculated. It demonstrated a significant improvement in quality metrics (an increase in average accuracy of 0.383, an increase in f1-score of 0.509, and an increase in accuracy of 0.792) relative to the baseline model. This article presents the results of experiments aimed at improving the quality metrics of machine learning models used to predict borrower default.

Conclusion. The development of integrated borrower default prediction methods will improve the accuracy and reliability of forecast models, which is of great practical importance.

About the authors

A. F. Konstantinov

Plekhanov Russian University of Economics

Email: konstantinovaf@gmail.com
ORCID iD: 0009-0000-9591-3301
SPIN-code: 3088-3121

 Postgraduate Student, Department of Informatics 

Russian Federation, 36, Stremyannyy lane, Moscow, 115054, Russia

L. P. Dyakonova

Plekhanov Russian University of Economics

Author for correspondence.
Email: Dyakonova.LP@rea.ru
ORCID iD: 0000-0001-5229-8070
SPIN-code: 2513-8831

Candidate of Physical and Mathematical Sciences, Associate Professor,
Department of Informatics
 

Russian Federation, 36, Stremyannyy lane, Moscow, 115054, Russia

References

  1. Information and analytical material on the development of the banking sector of the Russian Federation in December 2024. https://www.cbr.ru/ collection/collection/file/55056/razv_bs_24_12.pdf (дата обращения: 17.09.2025). (In Russian)
  2. Ali A.A., Khedr A.M., El-Bannany M., Kanakkayil S. A powerful predicting model for financial statement fraud based on optimized xgboost ensemble learning technique. Applied Sciences. 2023. Vol. 13. No. 4. P. 2272. doi: 10.3390/app13042272
  3. Konstantinov A.F., Dyakonova L.P. Comparative analysis of class imbalance reduction methods in building machine learning models in financial sector. News of the Kabardino-Balkarian Scientific Center of RAS. 2025. Vol. 27. No. 1. Pp. 143–151. doi: 10.35330/1991-6639-2025-27-1-143-151. (In Russian)
  4. Qian H., Zhang S., Wang B. et al. A comparative study on machine learning models combining with outlier detection and balanced sampling methods for credit scoring 2021. https://arxiv.org/abs/2112.13196 (дата обращения: 01.09.2025). doi: 10.48550/arXiv.2112.13196
  5. Dyakonova L., Konstantinov A. Approaches to risk analysis in the financial sector based on machine learning and artificial intelligence methods / MPRA Paper. https://mpra.ub.uni-muenchen.de/122941/ (дата обращения: 17.09.2025)
  6. Liu F.T., Ting K.M., Zhou Z.H. Isolation forest. IEEE Xplore. 2008. Pp. 413–422. doi: 10.1109/ICDM.2008.17
  7. Blázquez-García A., Conde A., Mori U., Lozano J.A. A review on outlier/anomaly detection in time series data. https://arxiv.org/abs/2002.04236
  8. Ribeiro M.T., Singh S., Guestrin C. Why should I trust you? Explaining the predictions of any classifier. Режим доступа: https://arxiv.org/abs/1602.04938
  9. Breiman L. Bagging predictors. Machine Learning. 1996. Vol. 24. No. 2. Pp. 123–140.
  10. Abdoli M., Akbari M., Shahrabi J. Bagging supervised autoencoder classifier for credit scoring. Preprint. doi: 10.48550/arXiv.2108.078
  11. Zou Y., Gao C., Xia M., Pang C. Credit scoring based on a bagging-cascading boosted decision tree. Intelligent Data Analysis. 2022. Vol. 26. No. 6. Pp. 1557–1578. doi: 10.3233/IDA-216228

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Konstantinov A.F., Dyakonova L.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).