Economic-mathematical modeling and instrumental methods for improving efficiency of sports reserve training

Cover Page

Cite item

Full Text

Abstract

The article addresses issues of increasing the economic efficiency for the sports reserve training. Young athletes are viewed as valuable assets, and the training process as an optimizing investment project. Aim. The objective is to develop an economic and mathematical model increasing the human capital return on investment (HCROI) through personalizing training management. Materials and methods. Cluster analysis is used as an investigation method. Results. The K-means clustering algorithm has effectively grouped 103 athletes, who met 15 objective parameters, into two homogeneous groups. Analysis of variance (ANOVA) confirmed significant differences between the groups, allowing them to be interpreted as two types of assets with different potential and risks. For each cluster are developed differentiated management strategies (training programs) aimed at maximizing their "value" (athletic potential) and minimizing risks (injuries, dropout). Conclusion. The study shows that mathematical models facilitate the transition from intuitive to scientific management of sports assets, thereby improving the overall performance of sports organizations.

About the authors

T. S. Demyanenko

South Ural State University (National Research University)

Email: demianenkots@susu.ru
ORCID iD: 0000-0002-2420-5356
SPIN-code: 7170-3021

Candidate of Economic Sciences, Associate Professor of the Department of Mathematical and Computer Modeling

Russian Federation, V.I. Lenin avenue, 76, Chelyabinsk, Russia, 454080

E. A. Komov

South Ural State University (National Research University)

Email: besbogov@mail.ru

student of ET-414 group

Russian Federation, V.I. Lenin avenue, 76, Chelyabinsk, Russia, 454080

L. M. Semenenko

South Ural State University (National Research University)

Author for correspondence.
Email: lubashtyka28@gmail.com

student of ETv-229 group

Russian Federation, V.I. Lenin avenue, 76, Chelyabinsk, Russia, 454080

References

  1. Guba V.P., Kvashuk P.V., Nikitushkin V.G. Individualizatsiya podgotovki yunykh sportsmenov [Individualization of the training of young athletes]. Moscow: Fizkultura i sport, 2009. 276 p. EDN: QWSEHR. (In Russian)
  2. Lindt T.A. Physical development parameters of hockey players aged 11 to 21. Lechebnaya fizkultura i sportivnaya meditsina [Physical therapy and sports medicine]. 2016. Vol. 1(133). Pp. 12–17. EDN: VPQFOX. (In Russian)
  3. Jain A.K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters. 2010. Vol. 31(8). Pp. 651–666.
  4. Eremich N.A., Shestakov M.P. Clustering of movement control indicators in elite athletes. Vestnik sportivnoy nauki [Sports Science Bulletin]. 2023. Vol. 2. Pp. 83–89. EDN: YHBVJE. (In Russian)
  5. Surina-Marysheva E.F., Erlikh V.V., Korableva Yu.B., Kantyukov S.A. Heart rate variability in predicting the professional career prospects of 15-16-year-old elite hockey players. Teoriya i pracktika fizicheskoy kultury [Theory and practice of physical education]. 2019. Vol. 2. Pp. 29–31. EDN: PPICTP. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Demyanenko T.S., Komov E.A., Semenenko L.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).