Economic assessment of the application of electrodialysis method with solution cooling in wastewater treatment of galvanic products

Cover Page

Cite item

Full Text

Abstract

It is proposed to change the design of the electrodialyzer by integrating a cooling system, tubes passing through a block of ion-exchange membranes, through which cooling water is supplied through the internal volume of the device. The device and operating principle of the electrodialyzer are presented and compared with the prototype. The possibility of using an electrodialyzer with solution cooling in the process of purifying galvanic wastewater is considered. A process scheme for the purification of industrial solutions using an electrodialyzer with an increased membrane area and cooling has been proposed. The costs of operating the described scheme were assessed. The economic effect of implementation and the payback period of the technological process are calculated.

About the authors

S. I. Lazarev

Tambov State Technical University

Email: o.v.dolgova@mail.ru

доктор технических наук, профессор, заведующий кафедрой «Механика и инженерная графика»

Russian Federation, Tambov

O. V. Dolgova

Tambov State Technical University

Author for correspondence.
Email: o.v.dolgova@mail.ru

кандидат технический наук, старший преподаватель кафедры «Природопользование и защита окружающей среды

Russian Federation, Tambov

K. V. Shestakov

Tambov State Technical University

Email: o.v.dolgova@mail.ru

кандидат технических наук, доцент кафедры «Механика и инженерная графика»

Russian Federation, Tambov

References

  1. Yermolenko B.V., Kuzin Ye.N. [Optimization of the process of selecting technologies and equipment for wastewater treatment of galvanic production], Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya [News of higher educational institutions. Series: Chemistry and chemical technology], 2024, vol. 67, no. 2, pp. 111-118. doi: 10.6060/ivkkt.20246702.6913 (In Russ., abstract in Eng.)
  2. Dzhubari M.K., Alekseeva N.V. [Efficiency of electrodialysis in industrial wastewater treatment], Vestnik tekhnologicheskogo universiteta [Bulletin of the Technological University], 2020, vol. 23, no. 7, pp. 33-39. (In Russ., abstract in Eng.)
  3. Fomichev V.T., Gubarevich G.P., Savchenko A.V. [Purification of chromium-containing waters by electrodialysis in a non-stationary mode], Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura [Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture], 2020, no. 1(78), pp. 190-195. (In Russ., abstract in Eng.)
  4. Öner M.R., A. Kanca, O.N. Ata [et al.], Bipolar membrane electrodialysis for mixed salt water treatment: Evaluation of parameters on process performance, Journal of Environmental Chemical Engineering, 2021, vol. 9, no. 4, pp. 105750. doi: 10.1016/j.jece.2021.105750
  5. Niftaliev S.I., Kozaderova O.A., Kim K.B. [Application of bipolar electrodialysis with modified membranes in the treatment of chromium-containing wastewater from galvanic production], Ekologiya i promyshlennost' Rossii [Ecology and industry of Russia], 2021, vol. 25, no. 10, pp. 4-9. doi: 10.18412/1816-0395-2021-10-4-9 (In Russ., abstract in Eng.)
  6. Lipin A.G., Lipin A.A., Arkhipov N.A. [Wastewater treatment from monoammonium phosphate in an electric membrane], Rossiyskiy khimicheskiy zhurnal [Russian chemical journal], 2019, vol. 63, no. 3-4, pp. 45-49. doi: 10.6060/rcj.2019633.6 (In Russ., abstract in Eng.).
  7. Dudeja I., Nikhanj A.P. Singh Electrodialysis: A Novel Technology in the Food Industry. In book: Emerging Techniques for Food Processing and Preservation, CRC Press, 2024, 25 p.
  8. Peng Z., Sun Y. Leakage circuit characteristics of a bipolar membrane electrodialyzer with 5 BP-A-C units, Journal of Membrane Science, 2020, vol. 597, pp. 117762. doi: 10.1016/j.memsci.2019.117762
  9. Peng Z., Sun Y., Shi P., Wang Y. A mathematical model of the external circuits in a bipolar membrane electrodialysis stack: Leakage currents and Joule heating effect, Separation and Purification Technology, 2022, vol. 290,no. 2, pp. 120816. doi: 10.1016/j.seppur.2022.120816
  10. Akberova E.M., Yatsev A.M., Kozhukhova E.Yu., Vasilyeva V.I. [Microscopic analysis of the surface of heterogeneous membranes with different degrees of ion exchanger dispersion after temperature exposure], Kondensirovannyye sredy i mezhfaznyye granitsy [Condensed matter and interphase boundaries], 2017, vol. 19, no. 2, pp. 158-165. (In Russ., abstract in Eng.).
  11. Hu Y. Grand challenge in membrane applications: Liquid, Frontiers in Membrane Science and Technology, 2023, no. 2, pp. 1177528. doi: 10.3389/frmst.2023.1177528
  12. Xie R., Feng L., Lei Z. [et al.] A Novel Thermoresponsive Catalytic Membrane with Multiscale Pores Prepared via Vapor-Induced Phase Separation, Smart Porous Membranes, 2018, no. 14, pp. 1703650. doi: 10.1002/smll.201703650
  13. Luo X., Liu X., Wang Y. [et al.] Thermoresponsive membrane based on UCST-type organoboron polymer for smart gating and self-cleaning, Journal of Membrane Science, 2024, no. 693, pp. 122343.
  14. Carraretto I. M., Ruzzi V., Lodigiani F. [et al.] Characterization of the physical properties of the thermoresponsive block-copolymer PAGB2000 and numerical assessment of its potentialities in Forward Osmosis desalination, Polymer Testing, 2023, vol. 128, no. 9, pp. 108238. doi: 10.1016/j.polymertesting.2023.108238
  15. Zhang X., Xiong S., Liu C. [et al.] Smart TFC membrane for simulated textile wastewater concentration at elevated temperature enabled by thermal-responsive microgels, Desalination, 2021, no. 500, pp. 114870. doi: 10.1016/j.desal.2020.114870
  16. Filimonova A.A., Chichirova N.D., Chichirov A.A., Minibaev A.I. [Prospects for the use of electromembrane technologies in the energy sector], Trudy akademenergo [Proceedings of Academenergo], 2020, no. 2(59), pp. 55-76. (In Russ.).
  17. Lazarev S.I., Konovalov D.N., Galkina P.A., Malinin P.M. Elektrobaromembrannyy apparat kombinirovannogo tipa [Combined type electric baromembrane apparatus], Russian Federation, 2023, Pat. 2788625 (In Russ.).
  18. Lazarev S.I., Kovalev S.V., Shestakov K.V., Khokhlov P.A. Elektrodializator s okhlazhdeniyem razdelyayemogo rastvora [Electrodialyzer with cooling of the separated solution], Russian Federation, 2019, Pat. 2690339 (In Russ.).
  19. Pikuza V.I. Ekonomicheskiye raschety i biznes-modelirovaniye v Exel [Economic calculations and business modeling in Excel], St. Petersburg, Peter, 2012, 400 p. (In Russ.).
  20. Azimov A.M., Kamshybaev A., Isabaev N.N. [Assessing the economic efficiency of the membrane method for preparing drinking water], Central Asian Economic Review, 2023, no. 2(149), pp. 117-128. (In Russ., abstract in Eng.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).