Changes in the Parameters of Quantal Acetylcholine Release after Activation of PAR1-Type Thrombin Receptors at the Mouse Neuromuscular Junctions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In mature and newly formed neuromuscular synapses of mouse skeletal muscles, miniature endplate potentials (MEPPs) and multiquantal endplate potentials (EPPs) evoked by a single stimulation of the nerve were recorded using intracellular microelectrode technique. The mechanisms underlying the changes in spontaneous and evoked acetylcholine (ACh) release caused by the activation of PAR1-type muscle receptors induced by their peptide agonist TRAP6-NH2 were studied. It has been shown for the first time that, in either mature or newly formed motor synapses, the activation of PAR1 that lack presynaptic localization causes a sustained increase in the MEPP amplitude due to the increase in the ACh quantal size at the presynaptic level. It was found that phospholipase C (PLC) participates in the signaling mechanism triggered by the PAR1 activation. Exogenously applied brain-derived neurotrophic factor (BDNF) mimics the effect of activation of PAR1 by TRAP6-NH2. Moreover, an increase in the MEPP amplitude caused by the peptide PAR1 agonist was fully prevented by blocking the BDNF receptors–tropomyosin receptor kinases B (TrkB). Thus, it has been shown for the first time that the increase in ACh quantal size due to the activation of PAR1 in motor synapses is mediated by a complex signaling cascade that starts at the postsynaptic level of the motor synapse and ends at the presynaptic level. It is expected that the activation of PAR1 at the muscle fiber membrane followed by the PLC upregulation results in the release of neurotrophin BDNF as a retrograde signal. Its effect on the presynaptic TrkB receptors triggers the cascade leading to an increase in the quantal size of ACh.

作者简介

A. Gaydukov

Biology Department

编辑信件的主要联系方式.
Email: gaydukov@gmail.com
俄罗斯联邦, Moscow, 119234

I. Akutin

Biology Department

Email: gaydukov@gmail.com
俄罗斯联邦, Moscow, 119234

P. Bogacheva

Biology Department

Email: gaydukov@gmail.com
俄罗斯联邦, Moscow, 119234

O. Balezina

Biology Department

Email: gaydukov@gmail.com
俄罗斯联邦, Moscow, 119234


版权所有 © Pleiades Publishing, Ltd., 2018
##common.cookie##