Reorganization of interphase microtubules in root cells of Medicago sativa L. during acclimation to osmotic and salt stress


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We examined the organization of microtubule system of interphase cells in roots of Medicago sativa L. during acclimation to salt and osmotic stress at different concentrations of NaCl, Na2SO4, and mannitol. We identified morphological changes of tubulin cytoskeleton in different root tissues during the acclimation to salt and osmotic stress: (1) decreased density of the cortical microtubule network, (2) random orientation of cortical microtubule bundles, (4) thickening of the bundles, (3) nonuniform density of the bundles, (4) fragmentation of the bundles, and (5) formation of microtubule converging centers. Network thinning and thickening of the bundles were observed both under osmotic and salt stress. Random orientation of cortical microtubules was visualized under osmotic stress but not during salt stress. Fragmentation of microtubule bundles took place under salt stress with a high concentration of mannitol. Formation of microtubule converging centers was common under prolonged action of sodium sulfate, less evident under sodium chloride, and not found after mannitol treatment. Our data show that, in alfalfa root cells, cortical microtubules rearrange not only in response to different ions, but also to osmotic pressure. Thus, the signaling pathways and molecular mechanisms inducing reorganization of the microtubule system may be triggered by sodium cations, as well as by sulfate and chloride anions at concentrations that do not cause irreversible cell damage.

Sobre autores

E. Lazareva

Biology Faculty; All-Russia Research Institute of Agricultural Biotechnology

Autor responsável pela correspondência
Email: lazareva-e@yandex.ru
Rússia, Moscow, 119234; Moscow, 127550

E. Baranova

All-Russia Research Institute of Agricultural Biotechnology

Email: lazareva-e@yandex.ru
Rússia, Moscow, 127550

E. Smirnova

Biology Faculty; All-Russia Research Institute of Agricultural Biotechnology

Email: lazareva-e@yandex.ru
Rússia, Moscow, 119234; Moscow, 127550


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies