Regularization of the Solution of the Cauchy Problem: The Quasi-Reversibility Method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Some regularization algorithm is proposed related to the problem of continuation of the wave field from the planar boundary into the half-plane. We consider a hyperbolic equation whose main part coincideswith the wave operator, whereas the lowest term contains a coefficient depending on the two spatial variables. The regularization algorithm is based on the quasi-reversibility method proposed by Lattes and Lions. We consider the solution of an auxiliary regularizing equation with a small parameter; the existence, the uniqueness, and the stability of the solution in the Cauchy data are proved. The convergence is substantiated of this solution to the exact solution as the small parameter vanishes. A solution of an auxiliary problem is constructed with the Cauchy data having some error. It is proved that, for a suitable choice of a small parameter, the approximate solution converges to the exact solution.

作者简介

V. Romanov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: romanov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090

T. Bugueva

Sobolev Institute of Mathematics; Novosibirsk State University

Email: romanov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. Dedok

Sobolev Institute of Mathematics; Novosibirsk State University

Email: romanov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018