Regularization of the Solution of the Cauchy Problem: The Quasi-Reversibility Method


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Some regularization algorithm is proposed related to the problem of continuation of the wave field from the planar boundary into the half-plane. We consider a hyperbolic equation whose main part coincideswith the wave operator, whereas the lowest term contains a coefficient depending on the two spatial variables. The regularization algorithm is based on the quasi-reversibility method proposed by Lattes and Lions. We consider the solution of an auxiliary regularizing equation with a small parameter; the existence, the uniqueness, and the stability of the solution in the Cauchy data are proved. The convergence is substantiated of this solution to the exact solution as the small parameter vanishes. A solution of an auxiliary problem is constructed with the Cauchy data having some error. It is proved that, for a suitable choice of a small parameter, the approximate solution converges to the exact solution.

Об авторах

V. Romanov

Sobolev Institute of Mathematics

Автор, ответственный за переписку.
Email: romanov@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090

T. Bugueva

Sobolev Institute of Mathematics; Novosibirsk State University

Email: romanov@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. Dedok

Sobolev Institute of Mathematics; Novosibirsk State University

Email: romanov@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).