On distance Gray codes
- 作者: Bykov I.S.1, Perezhogin A.L.1,2
-
隶属关系:
- Novosibirsk State University
- Sobolev Institute of Mathematics
- 期: 卷 11, 编号 2 (2017)
- 页面: 185-192
- 栏目: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212673
- DOI: https://doi.org/10.1134/S1990478917020041
- ID: 212673
如何引用文章
详细
A Gray code of size n is a cyclic sequence of all binary words of length n such that two consecutive words differ exactly in one position. We say that the Gray code is a distance code if the Hamming distance between words located at distance k from each other is equal to d. The distance property generalizes the familiar concepts of a locally balanced Gray code. We prove that there are no distance Gray codes with d = 1 for k > 1. Some examples of constructing distance Gray codes are given. For one infinite series of parameters, it is proved that there are no distance Gray codes.
作者简介
I. Bykov
Novosibirsk State University
编辑信件的主要联系方式.
Email: patrick.no10@gmail.com
俄罗斯联邦, ul. Pirogova 2, Novosibirsk, 630090
A. Perezhogin
Novosibirsk State University; Sobolev Institute of Mathematics
Email: patrick.no10@gmail.com
俄罗斯联邦, ul. Pirogova 2, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
补充文件
