On distance Gray codes
- Авторы: Bykov I.S.1, Perezhogin A.L.1,2
-
Учреждения:
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Выпуск: Том 11, № 2 (2017)
- Страницы: 185-192
- Раздел: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212673
- DOI: https://doi.org/10.1134/S1990478917020041
- ID: 212673
Цитировать
Аннотация
A Gray code of size n is a cyclic sequence of all binary words of length n such that two consecutive words differ exactly in one position. We say that the Gray code is a distance code if the Hamming distance between words located at distance k from each other is equal to d. The distance property generalizes the familiar concepts of a locally balanced Gray code. We prove that there are no distance Gray codes with d = 1 for k > 1. Some examples of constructing distance Gray codes are given. For one infinite series of parameters, it is proved that there are no distance Gray codes.
Ключевые слова
Об авторах
I. Bykov
Novosibirsk State University
Автор, ответственный за переписку.
Email: patrick.no10@gmail.com
Россия, ul. Pirogova 2, Novosibirsk, 630090
A. Perezhogin
Novosibirsk State University; Sobolev Institute of Mathematics
Email: patrick.no10@gmail.com
Россия, ul. Pirogova 2, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
Дополнительные файлы
