On full-rank perfect codes over finite fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a construction of full-rank q-ary 1-perfect codes. This is a generalization of the construction of full-rank binary 1-perfect codes by Etzion and Vardy (1994). The properties of the i-components of q-ary Hamming codes are investigated, and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1-perfect codes is generalized to the q-ary case. We propose a generalization of the notion of an i-component of a 1-perfect code and introduce the concept of an (i, σ)-component of a q-ary 1-perfect code. We also present a generalization of the Lindström–Schönheim construction of q-ary 1-perfect codes and provide a lower bound for the number of pairwise distinct q-ary 1-perfect codes of length n.

作者简介

A. Romanov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: rom@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016