Asymptotics for the Logarithm of the Number of (k, l)-Solution-Free Collections in an Interval of Naturals
- Авторлар: Sapozhenko A.A.1, Sargsyan V.G.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 13, № 2 (2019)
- Беттер: 317-326
- Бөлім: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/213188
- DOI: https://doi.org/10.1134/S1990478919020133
- ID: 213188
Дәйексөз келтіру
Аннотация
A collection (A1, … ,Ak+l) of subsets of an interval [1, n] of naturals is called (k, l)-solution-free if there is no set (a1, … , ak+l) ∈ A1 × ⋯ × Ak+l that is a solution to the equation x1 + ⋯ + xk = xk+1 + ⋯ + xk+l. We obtain the asymptotics for the logarithm of the number of sets (k, l)-free of solutions in an interval [1, n] of naturals.
Негізгі сөздер
Авторлар туралы
A. Sapozhenko
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: sapozhenko@mail.ru
Ресей, Leninskie gory 1, Moscow, 119991
V. Sargsyan
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: vahe_sargsyan@ymail.com
Ресей, Leninskie gory 1, Moscow, 119991
Қосымша файлдар
