SUSTAINABLE DEVELOPMENT OF FLOODPLAIN TERRITORIES OF REGULATED RIVERS. PART II: Designing an Effective Territory Structure Management System

Cover Page

Cite item

Full Text

Abstract

Part II of the study presents an approach to designing a sustainable management system for the environmental socio-economic systems (ESESs) of floodplain territories based on hydrotechnical projects on their hydrological regime stabilization. The general strategic development task of a floodplain ESES is formulated as a long-term constrained optimization problem of its environmental socio-economic potentials. To reduce parametric uncertainty, this problem is transformed into that of finding optimal locations for installing flood dams in floodplain channels and their adaptive operation modes during the spring releases of hydroelectric power stations (HPSs) in order to implement the target stable design-achievable complex structure of the floodplain territory that ensures socio-economic safety and the sustainable flooding of the floodplain ecosystem’s biotope. The problem is solved using an original empirical “donor-acceptor” optimization method in combination with other exact methods of optimization, expert assessment, geoinformation and numerical hydrodynamic modeling, as well as high-performance computing, the statistical analysis of natural observation data, and the results of computational experiments. The approach is applied to find the optimal locations and operation modes of flood dams that ensure the sustainable safe spring flooding of the Volga–Akhtuba floodplain territory considering the spatially heterogeneous depression effect of the Volga riverbed. This study neglects the conditions of navigation on the Volga during the spring release of the Volzhsk HPS and other hydrotechnical design aspects.

About the authors

I. I Isaeva

Volgograd State University

M. A Kharitonov

Volgograd State University

A. A Vasilchenko

Volgograd State University

A. A Voronin

Volgograd State University

A. V Khoperskov

Volgograd State University

A. Yu Klikunova

Volgograd State University

References

  1. Векслер А.Б., Доненберг В.М. Переформирование русла в нижних бьефах крупных электростанций. – М.: Энергоатомиздат, 1983. – 217 с. [Veksler, A.B., Donenberg, V.M. Reshaping the Channel in the Development of Large Power Plants. – M.: Energoatomizdat, 1983. – 217 s. (In Russian)]
  2. Иванов В.В., Коротаев В.Н. Влияние гидроузлов на деформации пойменных берегов и русловых форм в низовьях реки Волги и Кубани // Эрозия почв и русловые процессы. – 2008. – Вып. 16. – С. 224–242. [Ivanov, V.V., Korotayev, V.N. Vliyaniye gidrouzlov na deformatsii poymennykh beregov i ruslovykh form v nizov'yakh reki Volgi i Kubani // Eroziya pochv i ruslovyye protsessy. – 2008. – Iss. 16. – P. 224–242. (In Russian)]
  3. Александровский А.Ю., Силаев Б.И., Чуканов В.В. Влияние русловых деформаций в нижнем бьефе на условия работы энергетического оборудования ГЭС // Гидротехническое строительство. ‒ 2002. ‒ № 11. – С. 20–23. [Aleksandrovskiy, A.Yu., Silayev, B.I., Chukanov, V.V. Vliyaniye ruslovykh deformatsiy v nizhnem b'yefe na usloviya raboty energeticheskogo oborudovaniya GES // Gidrotekhnicheskoye stroitel'stvo. ‒ 2002. ‒ No. 11. ‒ P. 20–23. (In Russian)]
  4. Асарин А.Е., Ткачёв К.В. Русловые деформации в нижнем бьефе волгоградского гидроузла и возможности их ограничения // Гидротехническое строительство. ‒ 2014. ‒ № 12. ‒ С. 54–58. [Asarin, A.Ye., Tkachov, K.V. Ruslovyye deformatsii v nizhnem b'yefe volgogradskogo gidrouzla i vozmozhnosti ikh ogranicheniya // Gidrotekhnicheskoye stroitel'stvo. ‒ 2014. ‒ No. 12. ‒ P. 54–58. (In Russian)]
  5. Исаева И.И., Харитонов М.А., Васильченко А.А., и др. Устойчивое развитие пойменных территорий зарегулированных рек. Ч. 1. Моделирование динамики комплексной структуры пойменных территорий // Проблемы управления. – 2023. – № 6. – С. 42–55. – DOI: http://doi.org/10.25728/pu.2023.6.4. [Isaeva, I.I., Kharitonov, M.A., Vasilchenko, A.A., et al. Sustainable Development of Floodplain Territories of Regulated Rivers. Part I: Modeling Complex Structure Dynamics // Control Sciences. – 2023. – No. 6. – P. 35–47. – DOI: http://doi.org/10.25728/cs.2023.6.4.]
  6. Горелиц О.В., Землянов И.В. Современный механизм заливания территорий Волго-Ахтубинской поймы в период половодья (в пределах Волгоградской области) // Научный потенциал регионов на службу модернизации. – Астрахань. ‒ 2013. ‒ № 2 (5). – С. 9–18. [Gorelits, O.V., Zemlyanov, I.V. Sovremennyy mekhanizm zalivaniya territoriy Volgo-Akhtubinskoy poymy v period polovod'ya (v predelakh Volgogradskoy oblasti) // Nauchnyy potentsial regionov na sluzhbu modernizatsii. Astrakhan'. ‒ 2013. ‒ No. 2 (5). – P. 9–18. (In Russian)]
  7. Преснякова А.Н., Писарев А.В., Храпов С.С. Исследование динамики затопления территории Волго-Ахтубинской поймы по данным космического мониторинга // Математическая физика и компьютерное моделирование. ‒ 2017. ‒ № 1 (38). ‒ С. 66–74. [Presnyakova, A.N., Pisarev, A.V., Khrapov, S.S. Issledovaniye dinamiki zatopleniya territorii Volgo-Akhtubinskoy poymy po dannym kosmicheskogo monitoringa // Matematicheskaya fizika i komp'yuternoye modelirovaniye. ‒ 2017. ‒ No. 1 (38). ‒ P. 66–74. (In Russian)]
  8. Болгов М.В., Шаталова К.Ю., Горелиц О.В. и др. Водно-экологические проблемы Волго-Ахтубинской поймы // Экосистемы: экология и динамика. – 2017. – Т. 1, № 3. – С. 15–37. [Bolgov, M.V., Shatalova, K.Yu., Gorelits, O.V., et al. Vodno-ekologicheskiye problemy Volgo-Akhtubinskoy poymy // Ekosistemy: ekologiya i dinamika. – 2017. – Vol. 1, no. 3. – P. 15–37. (In Russian)].
  9. Землянов И.В., Горелиц О.В., Павловский А.Е. и др. Анализ экологических последствий эксплуатации Волгоградского водохранилища для сохранения биоразнообразия основных водно-болотных территорий Нижней Волги. Отчет о НИР. ‒ М.: ФГУ «ГОИН», 2010. – 675 с. [Zemlyanov, I.V., Gorelits, O.V., Pavlovskiy, A.Ye., et al. Analiz ekologicheskikh posledstviy ekspluatatsii Volgogradskogo vodokhranilishcha dlya sokhraneniya bioraz-noobraziya osnovnykh vodno-bolotnykh territoriy Nizhney Volgi. Otchet o NIR. ‒ M.: FGU «GOIN», 2010. – 675 s. (In Russian)]
  10. Ryan, R., Kira, S., Ryan, A., et al. Degradation of Floodplain Integrity within the Contiguous United States // Communications Earth and Environment. ‒ 2023. – Vol. 4, no. 1. ‒ DOI: https://doi.org/10.1038/s43247-023-00877-4.
  11. Naseer, A., Xiangzhou, X., Manuel, E., et al. The Use of Check Dams in Watershed Management Projects Examples from Around the World // Science of the Total Environment. – 2019. – Vol. 676. – P. 683–691. – doi: 10.1016/j.scitotenv.2019.249
  12. Lucas-Borja, M.E., Piton, G., Nichols, M., Castillo, C., Yang, Y., Zema, D.A. The Use of Check Dams for Soil Restoration at Watershed Level: A Century of History and Perspectives // Science of the Total Environment. – 2019. – Vol. 692. – P. 37–38. – doi: 10.1016/j.scitotenv.2019.07.248.
  13. Yi, Z., Xiangdong, M., Bing, W., et al. Effects of Soil and Water Conservation Measures on Sediment Delivery Processes in a Hilly and Gully Watershed // Journal of Hydrology. – 2023. – Vol. 616. – Art. no. 128804. – DOI: https://doi.org/10.1016/j.jhydrol.2022.128804
  14. Polyakov, V.O., Nichols, M.H., McClaran, M.P., et al. Effect of Check Dams on Runoff, Sediment Yield, and Retention on Small Semiarid Watersheds // Journal of Soil and Water Conservation. – 2014 – Vol. 69, No. 5. – P. 414–421. – DOI: doi: 10.2489/jswc.69.5.414.
  15. Norman, L. M., Brinkerhoff, F., Gwilliam, E., et al. Hydrologic Response of Streams Restored with Check Dams in the Chiricahua Mountains // River Research and Applications. – 2015. – Vol. 32, no. 4. – P. 519–527. – doi: 10.1002/rra.2895.
  16. Etefa, G., Amaury, F., Amanuel, Z., et al. Effects of Check Dams on Runoff Characteristics Along Gully Reaches, the Case of Northern Ethiopia // Journal of Hydrology. – 2017. – Vol. 545. – P. 299–309. – doi: 10.1016/j.jhydrol.2016.12.019.
  17. Djuma, H., Bruggeman A., Camera, C., Eliades, M., Kostarelos, K. The Impact of a Check Dam on Groundwater Recharge and Sedimentation in an Ephemeral Stream // Water. – 2017. – Vol. 9, no. 11. – Art. no. 813. – doi: 10.3390/w9100813.
  18. Yuan, S., Li, Z., Chen, L., Li, P., Zhang, Z. Influence of Check Dams on Flood Hydrology Across Varying Stages of Their Lifespan in a Highly Erodible Catchment Loess Plateau of China. – CATENA. – 2022. – Vol. 210. – Art. no. 105864. – DOI: https://doi.org/10.1016/j.catena.2021.105864.
  19. Ran, Q., Tang, H., Wang, F., Gao, J. Numerical Modelling Shows an Old Check-Dam still Attenuates Flooding and Sediment Transport // Earth Surface Processes and Landforms. – 2021. – Vol. 46, no. 4. – P. 1–19. – doi: 10.1002/esp.5123.
  20. Tang, H., Pan, H., Ran, Q. Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment // Water. – 2020. – Vol. 12, no. 5. – Art. no. 1319. – doi: 10.3390/w12051319.
  21. Наумова Т.В., Кушер А.М., Пикалова И.Ф. Повышение эффективности эксплуатационных мероприятий по снижению захвата наносов в водозаборы оросительных систем // Вестник МГСУ. – 2019. – Т. 14. – № 9 (132). – С. 1167–1179. [Naumova, T.V., Kusher, A.M., Pikalova, I.F. Improving the Efficiency of Operational Measures to Reduce Sediment Uptake into Irrigation System Intakes // Bulletin of the MGSU. – 2019. – Vol. 14, no. 9 (132). – P. 1167–1179. (In Russian)]
  22. Gil-García, L., Gonz´alez-L´opez, H., Dionisio P´erez-Blanco, C. To Dam or not to Dam? Actionable Socio-Hydrology Modeling to Inform Robust Adaptation to Water Scarcity and Water Extremes // Environmental Science and Policy. – 2023. – Vol. 144. – P. 74–87. – doi: 10.1016/j.envsci.2023.03.012.
  23. Karakatsanis, D., Patsialis, T., Kalaitzidou, K., et al. Optimization of Dam Operation and Interaction with Groundwater: An Overview Focusing on Greece Citation // Water. – 2023. – Vol. 15. – Art. no. 3852. – DOI: https://doi.org/10.3390/w15213852.
  24. Gao, Y., Yang, L., Song, Y., Tian, J., Yang, M. Designing Water-Saving-Ecological Check Dam Sites by a System Optimization Model in a Region of the Loess Plateau, Northwest China // Ecological Informatics. – 2022. – Vol. 72. – Art. no. 101887. – DOI: https://doi.org/10.1016/j.ecoinf.2022.101887.
  25. Plateau, L., Huang, J., Hinokidani, O., Yasud, H., Chandra S., et al. Effects of the Check Dam System on Water Redistribution in the Chinese // Journal of Hydrologic Engineering ASCE. – 2013. – Vol. 18, no. 18. – P. 929–940. – doi: 10.1061/(ASCE)HE.1943-5584.0000689.
  26. Huang, J., Fu, Q., Osamu, H., Wang, B. Numerical Analysis of Water Budget Process of Check Dam System in Small Basin on Loess Plateau // Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. – 2011. – Vol. 27, no. 7. P. 51–57. – doi: 10.3969/j.issn.1002-6819.2011.07.009.
  27. Любимова Т.В., Латыш А.А. Динамика изменения уровня подземных вод в зоне грунтовых плотин // Геология, география и глобальная энергия. – 2020. – № 4 (79). – С. 84–88. [Lyubimova, T., Latysh, A. Dynamics of Changes in the Ground Water Level in the Area of Underground Dams // Geology, Geography and Global Energy. – 2020. – No. 4 (79). – P. 84–88. (In Russian)]
  28. Tang, R., Dai, Z., Mei, X., Lou, Y. Joint Impacts of Dams and Floodplain on the Rainfall-Induced Extreme Flood in the Changjiang (Yangtze) River // Journal of Hydrology. – 2023. – Vol. 627. – Art. no. 130428. – doi: 10.1016/j.jhydrol.2023.130428.
  29. Yazdi1, J., Sabbaghian Moghaddam, M., Saghafian, B. Optimal Design of Check Dams in Mountainous Watersheds for Flood Mitigation // Water Resources Management. – 2018. – Vol. 32. – P. 4793–4811. – DOI: https://doi.org/10.1007/s11269-018-2084-4.
  30. Стефанишин Д.В. Управление рисками от паводков на плотинах и затапливаемых территориях при стохастической неопределенности максимального речного стока // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. – 2007. – Т. 249. – С. 78–85. [Stefanishin, D., Flood Risk Management in Dams and Flooded Areas with Stochastic Uncertainty of Maximum River Flow // Proceedings of the All-Russian Scientific Research Institute of Hydraulic Engineering Named after B.E. Vedeneev. – 2007. – Vol. 249 – P. 78–85. (In Russian)]
  31. Яценко Е.С., Анисимова Д.А. Оценка последствий гидродинамической аварии на склюихинском водохранилище по имитационным параметрам волны прорыва плотины // Известия Алтайского государственного университета. – 2014. – № 3–2 (83). – С. 140–143. [Yatsenko, E., Anisimova, D. Assessment of the Consequences of the Hydrodynamic Accident at the Sklyukhinsky Reservoir by Simulation Parameters of the Dam Breakout Wave // Proceedings of the Altai State University. – 2014. – No. 3–2 (83). – P. 140–143. (In Russian)]
  32. Веременюк В.В., Ивашечкин В.В., Немеровец О.В. Моделирование процесса изменения уровней в каскаде из двух русловых водохранилищ при пропуске половодья // Наука и техника. – 2019. – Т. 18. – № 2. – С. 146–154. [Veremenyuk, V., Ivashechkin, V., Nemerovets, O. Modeling of the Process of Changing Levels in a Cascade of Two Channel Reservoirs during High Water // Science and Technology. – 2019. – Vol. 18, no. 2. – P. 146–154. (In Russian)]
  33. Квасов П.А. Новые подходы к стратегии строительства противопаводковых сооружений // Символ науки: международный научный журнал. – 2015. – № 12-1. – С. 49–53. [Kvasov, P. New Approaches to the Strategy for the Construction of Flood Defences // Symbol of Science: An International Scientific Journal. – 2015. – No. 12-1. – P. 49–53. (In Russian)]
  34. Фалеев М.И., Черных Г.С., Старостин А.С. Оценка опасностей и угроз, обусловленных катастрофическими наводнениями, и предложения по защите населения и территорий от них // Стратегия гражданской защиты: проблемы и исследования. – 2014. – Т. 4. – № 2 (7). – С. 18–32. [Faleev, M., Chernykh, G., Starostin, A. Assessment of Hazards and Threats Caused by Catastrophic Floods and Proposals for Protecting the Population and Territories from Them // Civil Protection Strategy: Problems and Research. – 2014. – Vol. 4, no. 2(7). – P. 18–32. (In Russian)]
  35. Conesa-García,C., López-Bermúdez, F., García-Lorenzo, R. Bed Stability Variations after Check Dam Construction in Torrential Channels (South-East Spain) // Earth Surface Processes and Landforms. – 2007. – Vol. 32 (14). – P. 2165–2184. – doi: 10.1002/esp.1521.
  36. Zema, D., Bombino, G., Denisi, P., Lucas-Borja, M., Zimbone, S. Evaluating the Effects of Check Dams on Channel Geometry, Bed Sediment Size and Riparian Vegetation in Mediterranean Mountain Torrents // Science of the Total Environment. – 2018. – Vol. 642. – P. 327–340. – DOI: https://doi.org/1016/j.scitotenv.2018.06.035.
  37. Mulat, K., Tegegne, A. Future Hydrology of the Upper Blue Nile River Basin and Its Impact on the Grand Ethiopian Renaissance Dam Water Resource System: A Review // Hydrological Sciences Journal. – 2023. – Vol. 68, iss. 5. – P. 734–744. – doi: 10.1080/02626667.2023.2179878.
  38. Болгов М.В., Беляев А.И. Водные проблемы нижней Волги: основные факторы и компенсирующие мероприятия // Известия РАН. Серия географическая. – 2023. – Т. 87. – № 6. – С. 862–874. [Bolgov, M.V., Belyaev, A.I. Water Problems of the Lower Volga: The Main Factors and Compensating Measures // News of the Russian Academy of Sciences. The Series is Geographical. – 2023. – Vol. 87, no. 6. – P. 862–874. (In Russian)]
  39. Costachea, R., Abdoe, H., Mishraf, A., et al. Using Fuzzy and Machine Learning Iterative Optimized Models to Generate the Flood Susceptibility Maps: Case Study of Prahova River Basin, Romania // Geomatics, Natural Hazards and Risk. – 2023. – Vol. 14. – No. 1. – DOI: https://doi.org/10.1080/19475705.2023.2281241.
  40. Voronin, A., Vasilchenko, A., Khoperskov, A. Project Optimization for Small Watercourses Restoration in the Northern Part of the Volga-Akhtuba Floodplain by the Geoinformation and Hydrodynamic Modeling // Journal of Physics: Conf. Series. – 2018. – Vol. 973. – P. 1–10. ‒ URL: http://iopscience.iop.org/article/10.1088/1742-6596/973/1/012064/pdf.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies