Роль локальных структурных паттернов в процессах формирования мнений в социальных сетях

Обложка
  • Авторы: Черевичная Н.В.1, Козицин И.В.2
  • Учреждения:
    1. Московский физико-технический институт
    2. ФГБУН Институт проблем управления им. В.А. Трапезникова РАН, Москва, Московский физико-технический институт
  • Выпуск: № 116 (2025)
  • Страницы: 116-134
  • Раздел: Сетевые модели в управлении
  • URL: https://journals.rcsi.science/1819-2440/article/view/307002
  • ID: 307002

Цитировать

Аннотация

Существенный пласт агент-ориентированных моделей социального влияния, начиная с моделей Френча - Харари - ДеГроота и Избирателя, описывает процессы изменения мнений как последовательность локальных взаимодействий агентов, при которых мнение фокального агента - объекта влияния - изменяется в зависимости от его текущего мнения и мнений его окружения, взятых с некоторыми весами. Эти веса отражают влиятельность агентов и могут зависеть от их социального положения, демографических характеристик, а также от силы связей между агентами. Вместе с тем в конкурирующих социологических теориях (теория социальных эпидемий, теория структурной близости, теория структурного разнообразия) постулируется, что сила влияния может варьироваться в зависимости от состава окружения агента, а также структуры связей внутри него. В настоящей работе проводится проверка данных теорий на примере лонгитюдных данных из социальной сети ВКонтакте, описывающих динамику мнений крупномасштабной выборки пользователей (~ 6 500 000) относительно политической повестки. Мы изучаем влияние со стороны пользователей, имеющих радикальные политические (консервативные или либеральные) взгляды на людей с умеренными взглядами. Показано, что рост числа друзей с радикальными взглядами способствует увеличению силы влияния. При этом рост плотности связей в большинстве случаев либо не имеет эффекта на силу влияния, либо стабильно приводит к снижению силы влияния, что согласуется с результатами теории структурного разнообразия.

Об авторах

Наталья Владимировна Черевичная

Московский физико-технический институт

Email: cherevichnaia.nv@phystech.edu
Москва

Иван Владимирович Козицин

ФГБУН Институт проблем управления им. В.А. Трапезникова РАН, Москва, Московский физико-технический институт

Email: kozisin.ivan@mail.ru
Москва

Список литературы

  1. ARAL S., WALKER D. Tie strength, embeddedness, and socialinfluence: A large-scale networked experiment // ManagementScience. – 2014. – Vol. 60, No. 6. – P. 1352–1370. – doi: 10.1287/mnsc.2014.1936.
  2. BURE V., PARILINA E., SEDAKOV A. Consensus insocial networks with heterogeneous agents and two centersof influence // Int. Conf. Stability and Control Processes inMemory of V.I. Zubov (SCP–2015). – IEEE, 2015. – P. 233–236. – doi: 10.1109/SCP.2015.7342113.
  3. CENTOLA D. The spread of behavior in an online socialnetwork experiment // Science. – 2010. – Vol. 329. – No. 5996. –P. 1194–1197. – doi: 10.1126/science.1185231.
  4. CLIFFORD P., SUDBURY A. A model for spatial conflict //Biometrika. – 1973. – Vol. 60, No. 3. – P. 581–588. – doi: 10.1093/biomet/60.3.581.
  5. DEGROOT M.H. Reaching a consensus // Journal of theAmerican Statistical Association. – 1974. – Vol. 69, No. 345. –P. 118–121. – doi: 10.1080/01621459.1974.10480137.
  6. FLACHE A. et al. Models of social influence: Towards thenext frontiers // Jasss-The Journal of Artificial Societies andSocial Simulation. – 2017. – Vol. 20, No. 4. – P. 2. – doi: 10.18564/jasss.3521.
  7. FRENCH JR J.R.P. A formal theory of social power //Psychological Review. – 1956. – Vol. 63, No. 3. – P. 181–194. –doi: 10.1037/h0046123.
  8. GEZHA V.N., KOZITSIN I.V. The effects of individuals’opinion and non-opinion characteristics on the Organization ofInfluence Networks in the online domain // Computers. – 2023. –Vol. 12, No. 6. – P. 116. – doi: 10.3390/computers12060116.
  9. GONZALEZ-BAILON S., DE DOMENICO M. Bots are lesscentral than verified accounts during contentious politicalevents // Proc. of the National Academy of Sciences. –2021. – Vol. 118, No. 11. – P. e2013443118. – doi: 10.1073/pnas.2013443118.
  10. HARARY F. A criterion for unanimity in French’s theory ofsocial power // In: D. Cartwright (Ed.) Studies in social power. –1959. – P. 168–192.
  11. KAIRAM S.R., WANG D.J., LESKOVEC J. The life and deathof online groups: Predicting group growth and longevity // Proc.of the fifth ACM Int. Conf. on Web Search and Data Mining. –2012. – P. 673–682. – doi: 10.1145/2124295.2124374.
  12. KOEHLER D. The radical online: Individual radicalizationprocesses and the role of the Internet // Journal forDeradicalization. – 2014. – No. 1. – P. 116–134.
  13. KOZITSIN I.V. et al. Modeling political preferences ofrussian users exemplified by the social network Vkontakte //Mathematical Models and Computer Simulations. – 2020. –Vol. 12. – P. 185–194. – doi: 10.1134/S2070048220020088.
  14. KOZITSIN I.V. Formal models of opinion formation and theirapplication to real data: evidence from online social networks //The Journal of Mathematical Sociology. – 2022. – Vol. 46,No. 2. – P. 120–147. – doi: 10.1080/0022250X.2020.1835894.
  15. KOZITSIN I.V. A general framework to link theory andempirics in opinion formation models // Scientific Reports. –2022. – Vol. 12, No. 1. – P. 5543. – doi: 10.1038/s41598-022-09468-3.
  16. KOZITSIN I.V. Opinion dynamics of online social networkusers: a micro-level analysis // The Journal of MathematicalSociology. – 2023. – Vol. 47, No. 1. – P. 1–41. – doi: 10.1080/0022250X.2021.1956917.
  17. LIU S. et al. Job Done? New Modeling Challenges After 20Years of Work on Bounded-Confidence Models // JASSS. –2023. – Vol. 26, No. 4. – P. 8.
  18. PARSEGOV S.E. et al. Novel multidimensional models ofopinion dynamics in social networks // IEEE Trans. onAutomatic Control. – 2016. – Vol. 62, No. 5. – P. 2270–2285. –doi: 10.1109/TAC.2016.2613905.
  19. PETROV A., AKHREMENKO A., ZHEGLOV S. DualIdentity in Repressive Contexts: An Agent-Based Model ofProtest Dynamics // Social Science Computer Review. –2023. – Vol. 41, No. 6. – P. 2249–2273. – doi: 10.1177/08944393231159953.
  20. PROSKURNIKOV A.V., TEMPO R. A tutorial on modelingand analysis of dynamic social networks. Part I // AnnualReviews in Control. – 2017. – Vol. 43. – P. 65–79. – doi: 10.1016/j.arcontrol.2017.03.002.
  21. SNIJDERS T.A.B. Stochastic actor-oriented models fornetwork dynamics // Annual Review of Statistics and itsApplication. – 2017. – Vol. 4, No. 1. – P. 343–363. – doi: 10.1146/annurev-statistics-060116-054035.
  22. UGANDER J. et al. Structural diversity in social contagion //Proc. of the National Academy of Sciences. – 2012. – Vol. 109,No. 16. – P. 5962–5966. – doi: 10.1073/pnas.1116502109.
  23. ZHU K., YING L. Information source detection in the SIRmodel: A sample-path-based approach // IEEE/ACM Trans. onNetworking. – 2014. – Vol. 24, No. 1. – P. 408–421. – doi: 10.1109/TNET.2014.2364972.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).